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Abstract

Long non-coding RNAs (lncRNAs) play a significant role in various biological pro-

cesses. Hence, it is utmost important to elucidate their functions in order to under-

stand the molecular mechanism of a complex biological system. This versatile RNA

molecule has diversemodes of interaction, one ofwhich constitutes lncRNA–mRNA

interaction. Hence, identifying its target mRNA is essential to understand the func-

tion of an lncRNA explicitly. Existing lncRNA target prediction tools mainly adopt

thermodynamics approach. Large execution time and inability to perform real-time

prediction limit their usage. Further, lack of negative training dataset has been a hin-

drance in the path of developing machine learning (ML) based lncRNA target pre-

diction tools. In this work, we have developed a ML-based lncRNA–mRNA target

prediction model- ‘LncRTPred’. Here we have addressed the existing problems by

generating reliable negative dataset and creating robust MLmodels. We have identi-

fied the non-interacting lncRNA and mRNAs from the unlabelled dataset using

BLAT. It is further filtered to get a reliable set of outliers. LncRTPred provides a

cumulative_model_score as the final output against each query. In terms of predic-

tion accuracy, LncRTPred outperforms other popular target prediction protocols like

LncTar. Further, we have tested its performance against experimentally validated

disease-specific lncRNA–mRNA interactions. Overall, performance of LncRTPred is

heavily dependent on the size of the training dataset, which is highly reflected by the

difference in its performance for human and mouse species. Its performance for

human species shows better as compared to that for mouse when applied on an

unknown data due to smaller size of the training dataset in case of mouse compared

to that of human. Availability of increased number of lncRNA–mRNA interaction

data for mouse will improve the performance of LncRTPred in future. Both

webserver and standalone versions of LncRTPred are available. Web server link:

http://bicresources.jcbose.ac.in/zhumur/lncrtpred/index.html. Github Link: https://

github.com/zglabDIB/LncRTPred.
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1 | INTRODUCTION

Long non-coding RNAs (lncRNAs) are transcripts of
>200 nucleotides in length.1 It garnered lot of attention
among researchers due to its diverse functionality2,3

across various biological processes like regulation of gene
expression,4 cell cycle,5 transcriptional and post-
transcriptional processes,6,7 X-chromosome inactivation8

etc. They have also been reported to be involved in vari-
ous diseases like cancer,2 neurological disorders,9 autoim-
mune diseases10 and so on. Although being regarded as a
master regulator for various physiological processes,11

there remains a lot to explore regarding the working
mechanism of these molecules. It has been well investi-
gated that lncRNA accomplishes their function by inter-
acting with various biological molecules like RNAs,12

DNA13 and proteins14 which causes decay in mRNA,
splicing, aberrations, alterations in protein stability and
many more. Among these, RNA–RNA mode of interac-
tion is very popular which has been documented in sev-
eral reports as BACE1-antisense lncRNA(BACE1-AS)
with its target BACE1 mRNA.15 Similar to BACE1-AS,
PTB antisense lncRNA (PTB-AS) modulates the expres-
sion of PTBP1 mRNA16 by binding to the 30 untranslated
region (UTR) of PTBP1, which is an RNA-binding protein
that promotes gliomagenesis.17 Further, lncRNA named
FGFR3 antisense transcript 1 (FGFR3-AS1) binds com-
plementarily to its antisense FGFR3 gene, suggesting a
potential regulatory effect of FGFR3-AS1 in the expres-
sion of the FGFR3 gene.18 Hence, it is extremely impor-
tant to identify this mode of interaction executed by
lncRNAs. Several databases have been developed to
archive the lncRNA–mRNA interactions.19–21 The data-
base compiled by Terai et al.22 contains predicted
lncRNA–mRNA interactions which are again limited to
only one local base-pairing interaction for each lncRNA–
RNA interaction. RAID contains lncRNA–mRNA inter-
action data obtained from literature base.23 RISE24

includes experimentally validated lncRNA–RNA interac-
tions based on high-throughput sequencing methods.25,26

Both of these suffer from the limitation of storing a very
less number of interactions.

Till today, predicting lncRNA–mRNA interactions
have been done mainly by adopting thermodynamics-
based-free energy minimisation approach. One such algo-
rithm is MechRNA27 which mainly uses IntaRNA2,28

based on seed constraints and interaction site accessibil-
ity for the lncRNA–mRNA interaction prediction. Anti-
sense search approach (ASSA) uses sequence alignment
and thermodynamic approach to calculate lncRNA tar-
get.29 But, large execution time makes it difficult to use
most of the thermodynamic energy minimisation-based

target prediction tools.30 LncTar31 deploys the
nearest-neighbour algorithm, considering free
energy minimisation technique to detect the interactions.
But only 10 lncRNA–mRNA interactions were taken as
the experimentally validated dataset to test the prediction
accuracy of LncTar. Fukunga et al. try to address these
issues by developing the webserver—LncRRIsearch30 for
predicting human and mouse lncRNA targets. It uses
RIblast,32 a seed and extension method; pre-calculates
and stores lncRNA–mRNA interaction score in database
which is fetched when required for prediction. But, this
limits its capability to make real-time predictions where
the interactions are not pre-calculated. All these opened
up the avenue to adopt machine learning (ML)-based
approach to deal with such target prediction problems.
Few ML-based tools are there which mainly predict
lncRNA–miRNA33,34 and lncRNA–protein interactions14

but as far as the ML-based lncRNA–mRNA target predic-
tion is concerned, the existence of such tool is quite
rare.35 Moreover, it is quite well-known that any super-
vised ML algorithms execute upon a properly labelled
dataset. However, the lack of negative training dataset is
the main hindrance on the path of developing ML-based
lncRNA–mRNA prediction model. Weighted Average
Fusion Network Representation Learning method-based
model for predicting lncRNA Target Genes
(WAFNRLTG) is one such model35 which has been
developed based on the assumption that highly similar
lncRNAs tend to have similar interaction and lncRNAs
indirectly regulate gene expressions via adjusting expres-
sions of miRNAs. Such assumption may not be valid for
all lncRNA–mRNA interactions. Further, random shuf-
fling of unlabelled interactions, which is one of the
widely followed techniques to generate negative training
data,33–35 is the basis of generating negative dataset in
case of WAFNRLTG. But this procedure embeds noise
within ML models as it incorporates erroneous learn-
ing.36 This creates a limitation of this prediction model.

With all these challenges on board, we have come up
with ‘LncRTPred’ which is a ML-based lncRNA–mRNA
target prediction model. We have incorporated transcript
sequence as features, constituting two aspects: generation
of reliable negative training data and creation of ML
models. The first part of our work involves the develop-
ment of the training dataset from the experimentally vali-
dated lncRNA–mRNA experiments with a special
approach to obtain the reliable negative datasets. Subse-
quently, the next part deals with the creation of the ML
models and training them for precise lncRNA–mRNA
target prediction. Finally, we have tested its performance
against experimentally validated disease-specific
lncRNA–mRNA interactions.
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2 | MATERIALS AND METHODS

The development of the LncRTPred has been executed in
three steps which are as follows:

• Step 1: Building of training (positive) and test dataset
using experimentally validated lncRNA–mRNA target
datasets corresponding to human and mouse species.

• Step 2: Generation of reliable negative data from pre-
processed features which adopts special approach to
generate negative data.

• Step 3: Development of the ML-based model.

The entire workflow (mentioned above) is provided
in Figure 1.

2.1 | Building a positive training dataset

Human: Experimental data depicting positive interaction
between lncRNA and mRNA for human have been com-
piled from Supplementary information provided by
Zhang et al.37 The sequences are extracted from the
Refseq database.38 Data compilation has been done by

screening those target genes having a single transcript,
resulting in 1675 experimentally validated positive inter-
actions spreading across 421 unique mRNAs and
134 lncRNAs with 310 transcripts.

Mouse: NPInter439 serves as the source for positive
training dataset in case of mouse species. The corre-
sponding sequences have been fetched from Ensembl
Biomart.40 The entire positive training dataset includes
88 lncRNAs and 399 mRNA transcripts executing 500 pos-
itive interactions.

The details about the input dataset for both the spe-
cies are tabulated in Table 1. Interacting lncRNA and
mRNA sequences constituting the training data for
human and mouse species have been provided in Files S1
and S2, respectively.

2.2 | Generation of reliable negative data
from pre-processed features

Reliable negative data have been generated in two steps.
Step 1 is the pre-processing stage, which determines

the feature space of interacting RNAs in terms of feature
selection, normalisation and principal component

FIGURE 1 Flow Diagram of the entire work. The flow diagram depicts the various steps involved towards development of LncRTPred

which includes building the training and test dataset along with creation of reliable negative data followed by development of the ML-based

models.
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analysis (PCA).41,42 In step 2, reliable negative data are
generated from the unlabelled content by incorporating
The blast-like alignment tool (BLAT),43 one-class support
vector machine44–46 and isolation forest.47

2.2.1 | Step 1

Pre-processing
Input datasets consist of raw long RNA sequences corre-
sponding to both lncRNA and mRNA. Before incorporat-
ing various ML tools, it is required to convert those strings
of data into numeric form by virtue of feature selection,
normalisation and principal component analysis (PCA).

Feature selection
Raw sequences are provided as string of nucleotides
which are not sufficient to be fed into ML models. Fea-
ture selection step generates bag of nucleotides in both
simplex and complex forms. The set of features which
have been considered are sequence length, GC percent-
age and counting the occurrences of single, double, triple
and quadruple nucleotides which cumulatively produced
684 features for both lncRNA and mRNA are detailed in
Table 2.

Normalisation
Unnormalised data produce range inflation for certain
features resulting in slow convergence in various ML
models. This has been addressed by normalisation tech-
nique given in Equation (1) corresponding to input data
X with mean and std denoting the arithmetic average and
standard deviation, respectively.

NormalisedX ¼X�mean Xð Þ
std Xð Þ : ð1Þ

We have incorporated the Scikit-learn tool48 for nor-
malisation using the above equations.

Principal component analysis
Principal component analysis41,42 creates new set of
orthonormal and uncorrelated features known as princi-
pal component by linear combinations of actual feature
space to reduce data dimensionality after retaining maxi-
mum threshold variations. We have executed PCA tech-
nique upon original set of 684 features; plotted the
explained variability of each principal component and
finally employed the Elbow Method49 (https://en.
wikipedia.org/wiki/Elbow_method_(clustering)) to deter-
mine the number of principal component having retained
maximum variations.

2.2.2 | Step 2

Non-availability of negative interaction data is a big bot-
tleneck in the path of developing a supervised ML-based

TABLE 1 Input dataset used for developing LncRTPred.

Description

Human Mouse

Sources
Data size
(in #) Sources

Data size
(in #)

lncRNA transcripts PMID: 29401217, NCBI
RefSeq

310 NPInter 4, Ensembl
biomart

88

mRNA transcripts 421 399

Possible interaction pairs 130,510 35,112

Experimentally validated lncRNA–
mRNA pairs

1,675 500

Unlabelled pairs 128,835 34,612

TABLE 2 Feature description of lncRNA and mRNA extracted

from raw sequence data.

Feature descriptions
Number of
features

Sequence length 1

GC percentage 1

Unique nucleotides (A, C, G, T) count 4

Two contiguous nucleotides (AA, AC,
AG, AT, …, etc.) count

16

Three contiguous nucleotides (AAA,
AAC, AAG, AAT, …, etc.) count

64

Four contiguous nucleotides (AAAA,
AAAC, AAAG, AAAT, …, etc.) count

256

lncRNA features count 1 + 1 + 4 + 16
+ 64 + 256 = 342

mRNA features count 1 + 1 + 4 + 16
+ 64 + 256 = 342

Total number of features 342 * 2 = 684

4 DAS ET AL.
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algorithm in this case. In such cases, researchers nor-
mally perform random shuffling among the set of all mol-
ecules for generation of negative data which incorporate
flaws in learning procedure and generate false predic-
tion.33,35,50 We have addressed this issue by generating
reliable negative data from unlabelled pair of lncRNA
and mRNA sequences by adopting three strategies: The
BLAT, one-class support vector machine and isolation
forest have been placed into execution.

The BLAT
BLAT43 provides a faster version of pairwise sequence
alignment tool that can be utilised for both RNA/DNA
and protein/protein alignment. It provides output for both
reverse complementary and also exactly matched
sequences. Many unlabelled pairs of lncRNA and mRNA
have been obtained. Sequence alignment governs the
interactions among the biological molecules51–53 which
shows the roadmap for generating negative data from
unlabelled set. We extracted those pair of data where the
BLAT tool did not provide any output, which implies that
there has been no similarity or complementarity between
the lncRNA and mRNA sequences. Such sequence non-
matching indicates an enhanced probability of non-
interactive nature of the molecules. Overall, BLAT screens
the unlabelled dataset to provide a set of reliable negative
data. Outputs are subsequently fed into one-class support
vector machine and isolation forest for further processing.

One-class support vector machine
Support vector machine (SVM)44,45 is the maximum mar-
gin classifier that can be utilised to solve binary or multi-
class classification problems. One-class SVM pertaining to
the variation of SVM model46 belongs to the group of unsu-
pervised learning and behaves robustly in outlier detection.

It is trained upon the positive dataset and validated against
the screened data obtained from BLAT; depending upon
feature set of fitted positive data and can detect outlier.

Isolation forest
Isolation forest47 is a variation of random forest utilised
for anomaly or outlier detection. It is trained with dataset
containing one class and segregates the anomaly from
the normal data. For each data point, isolation forest is
averaged over the path length of individual isolation tree
to determine anomalous data. Following the same strat-
egy mentioned in the previous section, isolation forest is
trained with the positive dataset and detects outlier from
the filtered BLAT data.

Finally, the set of lncRNAs and mRNAs predicted as
outliers by both one-class SVM and isolation forest are
considered to be the reliable negative dataset (shown in
Table 3).

2.3 | ML-based model building

The positive and reliable negative dataset received from
previous section have been split randomly into training
and validation sets as provided in Table 4, in order to exe-
cute model fitting approach. The biggest constraint
explicitly posed in this situation is the formation of
imbalanced classification problem for both human and
mouse species as reliable negative data outnumbered the
positive ones. Multiple techniques have been incorpo-
rated in order to address this issue embedded across
hyper-parameters of various ML models. In this paper,
four ML models have been utilised for the prediction

TABLE 3 Data statistics corresponding to reliable negative

data generation.

Description Human Mouse

# of lncRNA–mRNA interaction data 130,510 35,112

# of experimentally validated positive
interactions

1,675 500

# of non-interacting pairs determined by
BLAT

54,474 16,978

Predicted outliers by BLAT and one-class
SVM

12,601 2083

Predicted outliers by BLAT and isolation
forest

27,909 3,626

Commonly predicted outliers (reliable
negative data) determined by BLAT,
one-class SVM and isolation forest

9,685 1794

TABLE 4 Training and validation data used for developing

LncRTPred model.

Description Human Mouse

Size of dataset with label 1 1,675 500

Size of dataset with label 0 9,685 1794

Size of entire dataset 11,360 2,294

Training dataset

Size of training dataset with label 1 1,300 400

Size of training dataset with label 0 9,200 1,690

Size of entire training dataset 10,500 2090

Validation dataset

Size of validation dataset with label 1 375 100

Size of validation dataset with label 0 485 104

Size of entire validation dataset 860 204

Note: Dataset with label 1 corresponds to positive interactions. Dataset with

label 0 corresponds to reliable negative data.

DAS ET AL. 5
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task; decision tree, K-nearest-neighbours (KNN), random
forest and LightGBM. Among them we have incorporated
the Scikit-learn tool to create first three models, whereas
LightGBM model has its standalone implementation.

2.3.1 | Decision tree

Decision tree54 embraces non-parametric, rule-based
technique; proceeds by growing a tree, can be utilised to
solve various prediction-based tasks.

2.3.2 | KNN

KNN55 is also a non-parametric approach where any
object is classified based on the instance voting of the
nearest neighbours. It is very much important to deter-
mine the number of neighbours (K) in order to balance
its performance. In our case, we considered number of
neighbours to be 3 to classify a particular object.

2.3.3 | Random forest

Random forest56 is an instance of ensemble learning
computed by averaging individual constituent of large
number of decision trees, that is, most voted output is the
result. Constituent decision trees within random forest
are trained upon random subset of features and data
both. Such Ensemble approach generally gives better out-
put compared to the individual model.

2.3.4 | LightGBM

LightGBM57 is faster version of gradient boosting deci-
sion tree (GBDT). Rather than scanning through the
whole dataset LightGBM utilises gradient-based one-side
sampling (GOSS) and exclusive feature bundling (EFB)
in leaf wise manner.

Further, LncRTPred cumulative_model_score is pro-
vided as the final output based on the prediction result

generated by decision tree, KNN, random forest and
LightGBM where the final output is considered to be pos-
itive if it is generated by at least three among the four
models.

Various metrics are taken into consideration to deter-
mine the model performance corresponding to validation
set viz., confusion matrix, accuracy, sensitivity, specific-
ity, ROC-AUC, F1 score and Matthews correlation coeffi-
cient. Being a classification algorithm, target variable is
discrete in terms of 1 as positive and 0 as negative inter-
action. Fundamental aspects associated with discrete-
dependent variables are:

True positive
Both true or actual and predicted label are positive or 1.

True negative
Both true or actual and predicted label are negative or 0.

False positive
Here true or actual label is negative or 0 and predicted
label is positive or 1.

False negative
Here true or actual label is positive or 1 and predicted
label is negative or 0.

Confusion Matrix projects TP, TN, FP and FN across
2-by-2 matrix to analyse the strength and loopholes of the
models at various target classes where primary diagonal
of the matrix denotes the accurate prediction in terms of
TN and TP and secondary diagonal denotes the wrong
prediction in terms of FP and FN. Accuracy is the most
basic performance metrics defined by Equation (2)

Accuracy¼ TPþTN
TPþTNþFPþFN

: ð2Þ

But model performance cannot be justified by accu-
racy alone if there exists an imbalance distribution
between two classes as it can achieve higher accuracy by
correctly predicting the major classes resulting in bias-
ness towards predicted results. Equations (3) and (4)
define Sensitivity which is also known as TP rate or recall

TABLE 5 Unknown test dataset used for performance comparison between LncRTPred and LncTar.

Description

Human Mouse

Sources
Data size
(in #) Sources

Data size
(in #)

Unknown test interaction data NPInter 4, Ensembl
biomart

44 NPInter 4, Ensembl
biomart

90

lncRNAs for unknown test
dataset

12 25

mRNAs for unknown test dataset 37 90

6 DAS ET AL.
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and specificity or TN rate respectively. Basically, these
two metrics segregate the performance of both positive
and negative classes individually.

Sensitivity¼ TP
TPþFN

, ð3Þ

Specificity¼ TN
TNþFP

: ð4Þ

Equation (5) defines FP rate for wrongly pre-
dicted data

False positive rate¼ FP
TNþFP

: ð5Þ

We have also incorporated area under receiver oper-
ating characteristic Curve (ROC-AUC) performance met-
ric corresponding which plots the TP rate (sensitivity) at

FIGURE 2 Elbow

detection curve for (a) human

species and (b) mouse species. It

depicts explained variability

among the features, governed

by Principal Components which

leads towards selecting

optimum set of features.
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FIGURE 3 Feature importance of (a) human and (b) mouse across different principal components. Bar chart depicts the feature

importance of top seven features across selected principal components for human and (B) mouse.

8 DAS ET AL.
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Y-axis and FP rate at X-axis at different classification
threshold where area under curve (AUC) depicts the per-
formance of ML model by measuring the entire area
between (0, 0) and (1, 1), so more the area covered under
the curve signifies better performance. F1 Score is a ver-
satile performance metric which corrects the drawbacks

associated with accuracy. It is defined as harmonic mean
of precision and recall, where Equations (6) and (7)
defined the precision and F1 score respectively.

Precision¼ TP
TPþFP

, ð6Þ

FIGURE 4 Performance comparison of the various ML Models used to develop LncRTPred for (a) human and (b) mouse. Bar chart

showing the performance comparison among various LncRTPred models—decision tree, K-nearest neighbours, random forest and

LightGBM on the validation Data in terms of accuracy, F1 score, Matthews correlation coefficient, sensitivity and specificity metrics

corresponding to (a) human species and (b) mouse species.
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F1Score¼ 2� 1
1

Precisionþ 1
Recall

: ð7Þ

We have also validated our models using Mathews
correlation coefficient (MCC) which finds the correlation
coefficient between two binary variables, true class and
the predicted class defined in Equation (8).

MCC¼ TP�TNð Þ� FP�FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þp : ð8Þ

The correlation coefficient in MCC ranges from +1 to
�1, where +1 denotes perfect prediction, 0 denotes ran-
dom prediction, whereas �1 denotes completely incorrect
or wrong prediction. In this paper, we have projected the
MCC score by multiplying with 100, such that they can
be compared with other performance metrics.

We have compared the performance of LncRTPred
with LncTar31 which is the most popular lncRNA–mRNA
interaction prediction tools based on free energy minimi-
sation approach. For LncTar, the normalised free energy
(ndG) cut-off of �0.1 (as per the recommendation of the
LncTar authors) has been used to generate the energeti-
cally stable lncRNA–mRNA pairs. The prediction accu-
racy has been calculated by the percentage of TP
predicted by LncRTPred and LncTar individually. It has

been computed upon an unknown test dataset from
NPInter439 and Ensembl Biomart,40 provided in Table 5.
It consists of 44 validated positive interactions involving
12 lncRNAs and 37 mRNAs for human and 25 lncRNAs
and 90 mRNAs involved in 90 validated positive interac-
tions corresponding to mouse species. Interacting
lncRNA and mRNA sequences constituting the test data
for human and mouse species have been provided in
Files S3 and S4, respectively.

Non-availability of codebase containing pre-trained
saved model (github link [https://github.com/HGDYZW/
WAFNRLTG]) limited us to include WAFNRLTG tool35

in the comparison.

Required software
Initially, Python packages have been incorporated to exe-
cute various analytics purpose in forms of preprocessing,
negative data generation and model creation. Anaconda
software belonging to python 3.8 containing bulk of the
library incorporated for the analysis including numpy
(min version: 1.19.1; max version: 1.20.3.), pandas (min
version: 1.1.3; max version: 1.5.3) and Scikit-learn (min
version: 0.23.1; max version: 0.24.2). Besides, LightGBM
(version 2.3.1) library has been separately downloaded
for building the corresponding model. Data visualisation
has been done through Matplotlib from python and
ggplot2 in R.

FIGURE 5 Confusion matrix showing performance statistics of LncRTPred corresponding to validation data for (a) human and

(b) mouse. This matrix shows the TP and TN predictions representing the number of accurate predictions and FP and FN predictions

representing the number of wrong predictions corresponding to validation data for human and mouse by the ML models (viz. decision tree,

K-nearest neighbours, random forest and LightGBM) used to develop LncRTPred.
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3 | RESULTS AND DISCUSSION

This part contains output from three sections: Feature
selection, negative data generation and model building.
The entire workflow is provided in Figure 1.

3.1 | Feature selection

As discussed above, we have generated 684 features for
both human and mouse cumulatively from raw
sequence data of lncRNAs and mRNAs. These features
have been normalised and fed to the PCA tools in
order to extract highly variable features by Elbow
method. We achieved the elbow corresponding to the
first 10 principal components retaining 92.68% and
87.8% variations for the features corresponding to
human (shown in Figure 2a) and mouse species
(shown in Figure 2b) respectively. Figure 3 shows the
bar chart of all 10 principal components constituting
the top seven features among 684 to have maximum
impact on individual principal component, which jus-
tifies that both lncRNA and mRNA features play
important roles in determining the principal compo-
nents for both species.

3.2 | Reliable negative data generation

BLAT algorithm has been incorporated to identify non-
interacting lncRNAs and mRNAs from the available
unlabelled dataset. The resultant BLAT outputs are fed
into both one-class SVM and isolation forest from which
common set of outliers are considered to be the reliable
negative dataset. The detailed statistics corresponding to
the reliable negative data generation phase is tabulated
in Table 3.

3.3 | Model building

The entire dataset has been split randomly into training
and validation sets as provided in Table 4, in order to exe-
cute model fitting approach. Figure S1 shows the box-
plots which help to identify the important features
towards classifying the interacting and non-interacting
set of lncRNAs and mRNAs. PCA_1, PCA_2, PCA_3,
PCA_9 and PCA_1, PCA_2, PCA_3 and PCA_4 are able
to capture the variations existing between the two classes
for human and mouse species respectively.

As specified in Materials and Methods section, we
have implemented four ML models to perform the pre-
diction task: Decision tree, KNN, random forest and

LightGBM. Due to the imbalance nature of the target
class, ML model bias towards majorly existing class. This
noise has been removed by tuning the hyperparameters
associated with various models. Figure 4a,b depicts the
comparative performance details of the various models
corresponding to the validation data for human and
mouse, respectively, which demonstrates that random
forest and KNN outperform other models. Figure 5a,b
shows the prediction statistics upon validation data in
terms of confusion matrix for both human and mouse
species, respectively. Figure 6a,b denotes the ROC-AUC
curve to measure the ability of the classifier for both
human and mouse species respectively. Figure 7a,b
shows the horizontal bar plot depicting the feature
importance generated by decision tree, random forest
and LightGBM models, which corroborates closely with
the boxplot interpretation corresponding to Figure S1a,b
for both human and mouse species respectively.

FIGURE 6 ROC-AUC Plot for (a) human and (b) mouse.

ROC-AUC curve corresponding to the validation data showing the

performance of the classification models used for developing

LncRTPred, viz., decision tree, K-nearest neighbours, random forest

and LightGBM by measuring their performance in terms of the

entire two dimensional area under ROC curve from (0, 0) to (1, 1).
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3.4 | Performance comparison with
other prediction models

Efficacy of models corresponding to unknown positive
test dataset (provided in Table 5) is measured by predic-
tion accuracy as it contains only experimentally validated
positive data. We have compared the prediction accuracy
of LncRTPred with that of LncTar. Figure 8 clearly shows
that LncRTPred outperforms LncTar.

3.5 | LncRTPred performance
corresponding to disease-specific lncRNA–
mRNA interactions

We have incorporated LncRTPred tool in the context of
disease-specific lncRNA–mRNA target prediction. Here,
we have considered four disease-specific RNA–RNA

interactions, breast cancer, acute myeloid leukaemia
(AML), cervical cancer and non-small cell lung cancer
(NSCLC). Pan et al.58 demonstrated that the interacting
pair of NNT-AS1 and ZFP36 is upregulated in breast cancer
tissue. Silencing NNT-AS1 lncRNA could induce cell apo-
ptosis and prevent the progression of tumour by suppres-
sing ZFP36. A positive expression correlation of SOX4 and
HOXA-AS2 has been observed in AML patients. Qu et al.59

reported SOX4 to be a downstream target of HOXA-AS2 as
observed by the decrease in mRNA level of SOX4 upon
HOXA-AS2 silencing in AML patients. HOXA-AS2 has
been proposed to function as an oncogene by regulating
the SOX4/PI3K/AKT pathway in AML. Wang et al.60

described the impact of GAS5 gene stability upon Cervical
Cancer. It has been found that GAS5-AS1 lncRNA is down-
regulated in cancer tissue. Basically, GAS5-AS1 interacted
with GAS5 tumour suppressor gene to suppress tumour
growth and metastasis in cervical cancer. Considering

FIGURE 7 Feature importance plot generated by the classification models used by LncRTPred for (a) human and (b) mouse. Bar plots

extracting the important features responsible for lncRNA–mRNA target identification task by the different models used for developing

LncRTPred.
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NSCLC, Liu et al.61 demonstrated that HOTAIR lncRNA is
significantly overexpressed in NSCLC tissue, it promotes
tumour growth and metastasis by downregulating HOXA5
mRNA infer their interaction in NSCLC.

LncRTPred tool predicted the interaction among all
these reported lncRNA–mRNA pairs to be positive

(which corroborates with the experimental results) and
the percentage of positive interaction predicted by four
ML models named decision tree, KNN, random forest
and LightGBM is shown in Figure 9. File S5 contains the
details about the individual model and cumulative_mo-
del_score for each pair.

FIGURE 8 Performance comparison of LncRTPred and LncTar on unknown test data for (a) human and (b) mouse. Bar plot depicting

the performance measure between LncRTPred cumulative_model_score and LncTar output (using the normalised free energy (ndG) cut-off

of �0.1) corresponding to the validation data.
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4 | CONCLUSION

Being one of the most abundant classes of non-coding
RNA molecules within the system, the regulatory role of
lncRNA is widespread and their interacting partners are
multiple. Extensive studies on lncRNAs over the years
have unearthed that the intricate association of lncRNAs
with their binding mRNA partners are responsible for
bringing regulatory changes in both the normal and dis-
eased conditions. The number of detected lncRNAs is
enormous though the knowledge of their versatile func-
tions is yet to be elucidated. In this regard, predicting their
target mRNA partners could shed light on the RNA–RNA
mode of interaction executed by the lncRNAs.

In this paper, we have developed an ML-based
lncRNA-target prediction protocol named ‘LncRTPred’.
The creation of such prediction model identifies the deter-
mining factor for lncRNA–mRNA interaction. But the big-
gest obstruction in incorporating supervised ML models
for such target prediction is the non-availability of reliable
negative data. Here, while developing LncRTPred, we
have adopted a novel approach to identify the non-
interacting lncRNA and mRNAs from the unlabelled data-
set using BLAT analysis. This has been further filtered by
different computational techniques like one-class SVM
and isolation forest to get the reliable set of outliers.

Overall, performance of LncRTPred as other ML
models is heavily dependent on the size of the training
dataset. From the results section, it is quite evident that
its performance for human species shows better as
compared to that for mouse when applied on an
unknown data. This is due to the smaller size of the
training dataset in case of mouse compared to that of
human. In future, availability of significant number of
lncRNA–mRNA interaction data corresponding to
other species including mouse will allow us to make
our model robust and versatile towards precise
lncRNA-target prediction in case of mouse. This will
also open up provisions for predicting lncRNA–mRNA
target interaction for additional species. Further, it is
essential to track its performance by in-depth wet lab
validations subsequently.
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