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Abstract

Virulence proteins in pathogens are essential for causing disease in a host.

They enable the pathogen to invade, survive and multiply within the host, thus

enhancing its potential to cause disease while also causing evasion of host

defense mechanisms. Identifying these factors, especially potential vaccine

candidates or drug targets, is critical for vaccine or drug development research.

In this context, we present an improved version of VirulentPred 1.0 for rapidly

identifying virulent proteins. The VirulentPred 2.0 is based on training

machine learning models with experimentally validated virulent protein

sequences. VirulentPred 2.0 achieved 84.71% accuracy with the validation

dataset and 85.18% on an independent test dataset. The models are trained and

evaluated with the latest sequence datasets of virulent proteins, which are

three times greater in number than the proteins used in the earlier version of

VirulentPred. Moreover, a significant improvement of 11% in the prediction

accuracy over the earlier version is achieved with the best position-specific

scoring matrix (PSSM)-based model for the latest test dataset. VirulentPred 2.0

is available as a user-friendly web interface at https://bioinfo.icgeb.res.in/

virulent2/ and a standalone application suitable for bulk predictions. With

higher efficiency and availability as a standalone tool, VirulentPred 2.0 holds

immense potential for high throughput yet efficient identification of virulent

proteins in bacterial pathogens.
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1 | INTRODUCTION

In recent decades, there has been a huge spike in infec-
tious diseases caused by different pathogens, such as bac-
teria. Due to this, there is a strong need to find new

antimicrobial therapies and drug targets for treatment.
Although several drug targets are known, however due to
the problem of antibiotic resistance (Ayukekbong
et al., 2017) there is an ever-increasing need to discover
new targets for developing new drugs. Furthermore, with
the availability of the complete sequence annotations of
several pathogen genomes (Land et al., 2015), the proteinArun Sharma and Aarti Garg contributed equally to this study.
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sequences of several virulent factors have also become
easily accessible.

Virulent proteins assist the bacterium to colonize the
host at the cellular level, promoting pathogenicity
(Denzer et al., 2020). In addition, the virulent factors
interact with the host's immune system and are essential
for pathogens to establish infection (Sarowska
et al., 2019), thus contributing directly and indirectly to
disease processes. The virulent factors are classified into
different types based on their crucial role during the dis-
ease processes such as adhesion (Patel et al., 2017), inva-
sion, colonization, toxins (Foster et al., 2014), and so
forth. All virulence factors employed by pathogens and
bacterial toxins often have a crucial function in the path-
ogenesis of infectious diseases.

Considering the burden of infectious diseases, it is
essential to identify and characterize virulent proteins
from pathogenic bacteria, as these are indispensable for
the pathogen's survival. Due to their significance, several
databases have been developed for virulent proteins, such
as the MVirDb (Zhou et al., 2006) and Virulence Factor
Database (VFDB) (Chen et al., 2005; Liu et al., 2018; Liu
et al., 2021). However, the experimental approaches to
identifying such proteins are time-consuming and expen-
sive. Furthermore, experimental determination of a
gene's involvement in disease requires knockout studies
(Paul et al., 2021) or mutations in the putative virulence
genes, which require a lot of experimental resources and
time, therefore, a costly endeavor. Hence, there is a
requirement for faster methods to determine the most
putative virulent proteins quickly and efficiently before
experimental assays are carried out.

Computational approaches are valuable for predicting
virulent proteins based on sequence data. The advent of
genomics and sequencing technologies has enabled the rapid
identification of such proteins (Burrack & Higgins, 2007)
and the development of computational methods for this pur-
pose. Many of these computational methods rely on
sequence similarity, motif, and domain search; however,
these methods have limited efficiency in cases where the
sequences share little to no sequence similarity. Hence, sev-
eral sequence-independent methods for predicting such pro-
teins are based on machine learning (Bonetta &
Valentino, 2020), such as support vector machines (SVM),
SPAAN (Sachdeva et al., 2004), VirulentPred (Garg &
Gupta, 2008), VICMpred (Saha & Raghava, 2006), MP3
(Gupta et al., 2014), and others.

In one of our past studies, we developed VirulentPred,
an SVM-based method for identifying virulent proteins in
bacteria (Garg & Gupta, 2008). Here, we present an
advanced and improved version of our previously devel-
oped tool, VirulentPred 2.0, with a standalone version
and a web-based GUI interface to facilitate rapid

identification of these proteins. For VirulentPred 2.0, we
used only experimentally verified virulent proteins to
develop the prediction model and achieved an accuracy
of 85.18%. This makes our study stand out from others
using putative or hypothetical proteins, apart from exper-
imentally validated virulent proteins, to train the models.
Our method will have profound implications for novel
drug targets and vaccine candidate predictions.

2 | MATERIALS AND METHODS

2.1 | Data source

The generation of the current positive data set began by
retrieving 3580 and 2852 virulent protein sequences from
the VFDB (Liu et al., 2021) and UniProt (UniProt, 2021)
databases, respectively (Figure 1).

2.2 | Data pre-processing

The core dataset file was downloaded from VFDB,
whereas we used virulence-related keywords such as vir-
ulence, adhesin, adhesions, toxin, invasion, capsule and
so forth to obtain sequences from UniProt
(UniProt, 2021). Further, these 6432 sequences were
strictly screened to filter out the entries labeled as
“probable,” putative, similarity, fragments, hypothetical,
unknown, and possible (Figure 1).

The annotated sequences of bacterial enzymes were
downloaded from the UniProt (UniProt, 2021) database
to make a negative dataset. Here, the nonvirulent protein
sequences were searched mainly in the bacterial pro-
teomes from which virulent protein sequences were
obtained for the positive dataset. This dataset was
screened strictly to generate a high-quality negative set.

Subsequently, the sequences were clustered and com-
pared using CD-HIT (Fu et al., 2012) at a cut-off value of
0.5 to remove identical sequences and reduce redundancy
among positive and negative datasets. First, we obtained
3403 sequences out of 6432 using CD-HIT for the positive
dataset. Further, to remove related lines among
positive and negative sets, these datasets were combined
and CD-HIT was reapplied with a cut-off value of 0.5,
resulting in 3375 virulent protein sequences. Eventually,
the processed dataset consisted of nonredundant 6781
sequences, comprising 3375 virulent and 3406 nonviru-
lent protein sequences (randomly selected to balance the
positive dataset) to generate trained models (Figure 1).
The distribution of virulent protein sequences from dif-
ferent bacterial pathogens after refinement is shown in
Table S1.
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FIGURE 1 A flowchart depicting the overall approach implemented for the data collection, pre-processing, model building and

deployment of the best model for VirulentPred 2.0.
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2.3 | Preparation of training and test
datasets

Preparation of training and test datasets is for machine
learning. In the present study, the positive and negative
datasets were randomly shuffled and divided into 80%
training and 20% test datasets. To ensure the absence of
homologous proteins between these training and test
datasets, we built a local database with training dataset
sequences (both positive and negative dataset protein
sequences, n = 5425), and performed a PSI-BLAST
search (using PSI-BLAST run options “-e 0.001 -j 3 -m
9 -v 1 -b 1”, where e is E-value, j is the maximum number
of passes, and the rest of the variables are related to PSI-
BLAST output format) against this database with the test
datasets protein sequences (n = 1356). From Table S2,
only 6.05% (n = 82) of test dataset protein sequences
showed similarity with training dataset proteins at an
identity percentage value of ≥50. Table 1 provides the dis-
tribution of positive and negative dataset protein
sequences used in the present study. Further, the training
dataset was randomly divided into an actual training set
(0.9 fraction of the data) and validation set (holdout 0.1
fraction of data) through an in-built feature of Auto-
Gluon (Erickson et al., 2020), for the training and inter-
nal evaluation of machine learning (ML) models,
respectively.

2.4 | Calculation of protein sequence
composition

The standalone package named GPSR (Saini et al., n.d.)
was used for the calculation of the amino acid composi-
tion (AAC), dipeptide composition (DPC), and tripeptide
composition (TPC) of virulent and nonvirulent protein
sequences.

2.5 | Calculation of protein sequences
PSSM profiles

We used an in-house PERL script to calculate the PSI-
BLAST (Altschul et al., 1997) generated PSSM profiles. A

PSI-BLAST iterative search was performed against the
SwissProt database with an E-value cut-off 0.001 for
the calculations.

2.6 | Techniques used for the training of
ML models

We used 14 different ML algorithms available in the
AutoGluon package (Erickson et al., 2020) for the train-
ing and performance evaluation of ML models (Table 2).

2.7 | PSI-BLAST-based classification of
proteins

We used two approaches to evaluate PSI-BLAST's perfor-
mance for classifying virulent and nonvirulent proteins.
Firstly, a local database of training dataset protein
sequences (n = 5425) was generated, and a sequence sim-
ilarity search of test dataset sequences (n = 1356), against
this database was performed through PSI-BLAST (using
the same PSI-BLAST run parameters as mentioned in the
Section 2.3). Secondly, the PSI-BLAST search perfor-
mance (using the same PSI-BLAST run parameters as
mentioned in the Section 2.3) was also evaluated through
a five-fold cross-validation technique applied to the train-
ing datasets protein sequences. For a five-fold cross-
validation-based PSI-BLAST evaluation, the virulent and
nonvirulent protein sequences training dataset was shuf-
fled and divided into five equally sized parts. The PSI-
BLAST search was performed five times so that each
time, one part was used as a test set, and the remaining
four parts were used to build a local database against
which the search was performed. Thus, each part was
used at least once for training and testing.

2.8 | Criteria used for the selection of
best ML models

The training dataset is used for training the machine
learning models (0.9 fraction) and identifying the best-
performing models with the help of the validation dataset

TABLE 1 Distribution of protein sequences in the training and test datasets.

Dataset type
Total number of
protein sequences

Number of protein sequences
in training dataset (80%)

Number of protein sequences
in test dataset (20%)

Positive dataset 3375 2700 675

Negative dataset 3406 2725 681

Both datasets 6781 5425 1356
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(holdout 0.1 fraction from the training dataset). The
models with the highest accuracy on the validation data-
set are automatically opted for and saved as the best
models by AutoGluon (Erickson et al., 2020). The saved
models are further evaluated with a test dataset to esti-
mate their real-life performance. The best-performing

models on validation and test datasets are deployed on
the VirulentPred 2.0 web server. Moreover, the best
model (PSSM-based) is also available on the VirulentPred
2.0 web server for their usage as online predictors by
users on their desktops or workstations.

3 | RESULTS

To develop the AutoGluon-based ML models, several
input features, such as AAC of whole protein sequences,
N/C-terminus residues AAC and binary profile patterns
(BPPs), PSSM profiles, and so forth, were used. The per-
formances of ML models with these input features are
given in the subsequent sections.

3.1 | Whole AAC-based models

Firstly, the best model trained with the whole AAC of
protein sequences achieved the highest accuracy
of 80.85% and 74.85% for validation and test datasets,
respectively (Table 3). For DPC-based models, the highest
accuracy of 79.37% and 74.56% was achieved for valida-
tion and test datasets, respectively. Similarly, 74.40% and
69.91% accuracy were achieved for TPC-based models for
validation and test datasets, respectively. Thus, all the
AAC-based models performed with moderate accuracy.

3.2 | N and C-terminus residues' AAC-
based models

The AAC of N and C-terminus protein/peptide sequences
are essential features in predicting various biological
properties, for example, antimicrobial, antibiofilm, cell-
penetrating, tumor homing, and various other activities
(Cooper & Marsden, 2017; Gautam et al., 2013;
Krishna & Englander, 2005; Lata et al., 2010; Petsalaki
et al., 2006; Sharma et al., 2013, 2016; Yamada
et al., 2017). However, in the present study, the highest
accuracy of 59.51% (with test dataset) was achieved with
the AAC of the C-terminal first 10 residues (CT10) as
input features to the machine learning models (Table 4).

3.3 | N and C-terminus residues' binary
profile pattern-based models

Specific residues at the N and/or C-terminus of the
sequences (in a position-specific manner) have been
reported to be associated with the biological activities of
proteins and peptides (Sharma et al., 2013, 2016).

TABLE 2 List of algorithms used for the training and

evaluation of VirulentPred 2.0 ML models.

Sr.
No. Algorithm name Reference

1 CatBoost https://catboost.ai/

2 ExtraTreesEntr https://scikit-learn.org/stable/
modules/generated/sklearn.
ensemble.ExtraTreesClassifier.
html#sklearn.ensemble.
ExtraTreesClassifier

3 ExtraTreesGini https://scikit-learn.org/stable/
modules/generated/sklearn.
ensemble.ExtraTreesClassifier.
html#sklearn.ensemble.
ExtraTreesClassifier

4 KNeighborsDist https://scikit-learn.org/stable/
modules/generated/sklearn.
neighbors.
KNeighborsClassifier.html

5 KNeighborsUnif https://scikit-learn.org/stable/
modules/generated/sklearn.
neighbors.
KNeighborsClassifier.html

6 LightGBM https://lightgbm.readthedocs.io/
en/latest/

7 LightGBMLarge https://lightgbm.readthedocs.io/
en/latest/

8 LightGBMXT https://lightgbm.readthedocs.io/
en/latest/

9 NeuralNetFastAI https://auto.gluon.ai/0.4.0/api/
autogluon.tabular.models.html

10 NeuralNetTorch https://auto.gluon.ai/0.4.0/api/
autogluon.tabular.models.html

11 RandomForestEntr https://scikit-learn.org/stable/
modules/generated/sklearn.
ensemble.
RandomForestClassifier.html

12 RandomForestGini https://scikit-learn.org/stable/
modules/generated/sklearn.
ensemble.
RandomForestClassifier.html

13 WeightedEnsemble https://www.cs.cornell.edu/
�alexn/papers/shotgun.icml04.
revised.rev2.pdf

14 XGBoost https://xgboost.readthedocs.io/
en/latest/
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Therefore, in the present study, an attempt has been
made to predict the virulent protein sequences with the
help of N and C-terminus residues' BPPs. As evident from
Table 5, the highest accuracy of 57.51% (test dataset) was
achieved with the BPPs of the N-terminal first 10 residues
(NT10) as input features to the machine learning models.

3.4 | Performance of hybrid models

Eleven hybrid ML models were developed with all possi-
ble combinations of the calculated input features
(Table 6). The highest test dataset accuracy of 84.51% was
achieved with a hybrid of AAC, DPC, and PSSM as input
features to train the ML model.

3.5 | PSI-BLAST-based classification of
virulent and nonvirulent proteins

Retrospectively, while working on the VirulentPred
server (Garg & Gupta, 2008), we have seen that PSI-
BLAST (Altschul et al., 1997) alone cannot efficiently
classify virulent and nonvirulent protein sequences.
Using PSI-BLAST as a similarity-based search model, we
could predict 52.5% and 51.7% of virulent and nonviru-
lent proteins, respectively, leading to an overall accuracy
of 52.1%. Therefore, AI methods always have the edge
over conventional similarity-based search methods.

A two-step process was used to check the same for
the present study. A PSI-BLAST-based search was per-
formed with test dataset proteins in the first step. Thus,

TABLE 3 Performances of models trained with the whole amino acid composition of protein sequences.

Data description
Validation dataset
performance Test dataset performance

Input data Number of input vectors Accuracy Sensitivity Specificity Accuracy MCC

Whole amino acid
composition

20 80.85 73.48 76.21 74.85 0.50

Dipeptide composition 400 79.37 71.41 77.68 74.56 0.49

Tripeptide composition 8000 74.40 72.00 67.84 69.91 0.40

Abbreviation: MCC, Mathew's correlation coefficient.

TABLE 4 Performances of models trained with the N and C-terminus residues composition of protein sequences.

Data description Validation dataset performance Test dataset performance

Input data Number of input vectors Accuracy Sensitivity Specificity Accuracy MCC

NT5 20 62.62 52.89 60.06 56.49 0.13

CT5 20 60.22 49.48 59.77 54.65 0.09

NT10 20 58.75 52.59 62.56 57.60 0.15

CT10 20 64.46 53.48 65.49 59.51 0.19

NTCT5 20 62.25 46.67 64.32 55.53 0.11

NTCT10 20 63.72 50.07 67.69 58.92 0.18

TABLE 5 Performances of models trained with the N and C-terminus residues' binary profile patterns.

Data description Validation set performance Test dataset performance

Input data Number of input vectors Accuracy Sensitivity Specificity Accuracy MCC

NT5 100 62.25 52.89 58.59 55.75 0.11

CT5 100 62.62 52.44 56.39 54.42 0.09

NT10 100 61.88 52.59 61.67 57.15 0.14

CT10 100 58.56 53.63 60.06 56.86 0.14

NTCT5 200 61.14 55.41 57.86 56.64 0.13

NTCT10 400 65.19 47.85 64.90 56.42 0.13
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search hits were retrieved for only 71.46% of test dataset
protein sequences (n = 969) when no identity (%) thresh-
old was applied (Table S3). During the search, if a test
dataset protein sequence showed identity with more than
one training dataset of protein sequences, the functional
class of the highest identical subject protein (with the
highest identity % value) was assigned as the predicted
functional class (virulent or nonvirulent) to the query test
protein. Thus, PSI-BLAST failed to detect hits for 28.54%
of test dataset proteins (n = 387) at no identity (%)
threshold. Although higher accuracy was achieved with
BLAST, but with a fewer protein sequences than the ML-
based method. However, for a rational sequence identity/
similarity-based functional class assignment, an identity
threshold of at least ≥30% is used. At this identity thresh-
old of ≥30% between query and subject proteins, BLAST
could annotate just 55.53% of test dataset proteins. Thus,
it is clear from this analysis that BLAST failed to detect
44.47% of test dataset protein sequences even when eval-
uated with a small and well-curated dataset of annotated
virulent and nonvirulent proteins. Moreover, at the high-
est identity thresholds of ≥50, hits were retrieved for only
6.05% of test dataset protein sequences.

In the second step, only 68.85% of protein sequences
retrieved hits showed similarity with the local
sequences database through a five-fold cross-validation
technique when no identity cut-off was applied
(Table S4). Functional classes were assigned to query test
dataset sequences following the rules used in the first
step. At an identity cut-off of ≥30%, only 52.70% of pro-
tein sequences retrieved hits. At the highest identity
thresholds of ≥50%, the hits were retrieved for only 5.33%
of protein sequences. Thus, it is clear from these two

evaluations that PSI-BLAST is not sufficient to identify
the virulent proteins.

3.6 | Comparative performance of
VirulentPred models

The comparative evaluation with the latest test dataset
(from VirulentPred 2.0) helped assess the performance
improvement achieved by VirulentPred 2.0 over the pre-
viously developed VirulentPred. Table 7 provides the
comparative performance of the best models from Viru-
lentPred 2.0 and VirulentPred 1.0. It can be seen that Vir-
ulentPred 2.0 is more accurate than its previous version.
For example, in the case of the “Cascade SVM classifier”,
an approximately 7% increase in the prediction accuracy
(from 75.74% to 82.82%) is achieved with VirulentPred
2.0. Whereas, for PSSM profile-based models, about an
11% increase in the prediction accuracy (from 74.19% to
85.18%) is achieved with VirulentPred 2.0. In the case of
threshold independent performance evaluation, a signifi-
cant improvement in the AUC value, that is, from 0.85
(reported in the previous version of VirulentPred, for the
PSSM-profiles-based model) to 0.924 is achieved
(Figure S1). Therefore, the PSSM profile-based model is
deployed as the best predictor model in VirulentPred 2.0.

3.7 | Advantages of VirulentPred 2.0
standalone over web-server

VirulentPred 2.0 web-server version can be used by biolo-
gists who wish to make predictions for a few sequences

TABLE 6 Performances of hybrid models trained with the whole amino acid composition and/or PSSM profiles of protein sequences.

Data description
Validation dataset
performance Test dataset performance

Input data Number of input vectors Accuracy Sensitivity Specificity Accuracy MCC

AAC + DPC 420 84.35 72.00 78.12 75.07 0.50

DPC + PSSM 800 84.35 86.22 80.76 83.48 0.67

AAC + PSSM 420 88.95 84.44 82.23 83.33 0.67

TPC + PSSM 8400 85.27 82.96 83.99 83.48 0.67

AAC + TPC 8020 78.82 71.70 79.15 75.44 0.51

DPC + TPC 8400 76.43 72.89 77.53 75.22 0.50

AAC + DPC + TPC 8420 81.03 73.93 77.24 75.59 0.51

AAC + DPC + PSSM 820 86.56 85.78 83.26 84.51 0.69

DPC + TPC + PSSM 8800 86.19 77.63 88.11 82.89 0.66

AAC + TPC + PSSM 8420 82.14 86.22 79.00 82.60 0.65

AAC + DPC + TPC + PSSM 8820 85.27 82.81 83.99 83.41 0.67

Abbreviations: AAC, amino acid composition; DPC, dipeptide composition; TPC, tripeptide composition.

SHARMA ET AL. 7 of 10



or those who do not have any knowledge of software
installation. The standalone version can be installed on
local desktops/workstations for bulk classifications. Fur-
thermore, depending on the availability of hardware con-
figuration (at the user's end), multiple runs can be
applied simultaneously by supplying multiple input
sequences files (after splitting thousands or lakhs of
sequences containing big files into smaller hundreds
of sequences containing files). Moreover, long waiting
queues on the web server can be avoided using the stan-
dalone VirulentPred 2.0.

4 | DISCUSSION

The bacterial virulence factors, such as virulent proteins,
carbohydrates, etc., are essential for bacterial survival
and proliferation within the host cells. A major portion of
virulent factors is constituted of virulent proteins. The
latter plays an essential role in bacterial attachment,
entry, movement, and survival into the host cells. For
pan-bacterial metagenomic analyses, a group has orga-
nized the virulence factors into 14 general categories (Liu
et al., 2021).

Identifying the virulent proteins synthesized by clini-
cally important pathogenic bacteria is an important
research task in infectious disease biology. However, due
to the advancements in sequencing technologies, geno-
mics and proteomics, data are being generated rapidly,
which makes the experimental identification of these
proteins challenging and time-consuming. Computa-
tional identification of virulent proteins can facilitate
experimental identification of virulent proteins. In 2008,
we developed a computational method named “Viru-
lentPred” to classify bacterial virulent and nonvirulent
proteins (Garg & Gupta, 2008). VirulentPred 1.0 is widely
used by researchers across the globe for the identification
of virulent bacterial proteins. However, the real-life suc-
cess of a machine learning-based method depends on its
regular, improved training and evaluation with the latest
available datasets. The availability of novel virulent and

nonvirulent protein sequences in the published literature
motivated us to develop a new and highly accurate
version “VirulentPred 2.0.” For developing VirulentPred
2.0, we used virulent proteins from 32 genera of patho-
genic bacteria in this study, whereas in the previous ver-
sion of VirulentPred, we used protein sequences from
only 12 bacterial genera. Moreover, the new version is
trained and evaluated with the contemporary ML tech-
niques implemented through the AutoGluon package.
The best models developed in the present study are
WeightedEnsemble_L2 types.

Like the previous version, the algorithms evaluated
by us did not perform well with the AAC, DPC, and TPC
of the protein sequences. Moreover, N and C-terminus
datasets AAC and BPPs failed to achieve satisfactory clas-
sification accuracy. In the case of the hybrid approach, a
hybrid of AAC, DPC, and PSSM-based ML model per-
formed with the highest accuracy. However, the Viru-
lentPred 2.0 algorithms trained and evaluated with PSSM
and cascade classifier (AAC, DPC, TPC, and PSSM) of
protein sequences outperformed the previously developed
models in the external or independent validation with
the latest test dataset (Table 7).

A significant improvement in the classification accu-
racy is achieved after the development of VirulentPred
2.0 models. The in-built facility of AutoGluon, that is,
weighted ensemble layers and the more extensive and
updated training dataset of virulent and nonvirulent pro-
teins, have increased classification accuracy. In contrast
to the older SVM cascade model, the present best model
is trained and evaluated with the PSSM profiles of the
protein sequences. This indicates the importance of evo-
lutionary information of proteins towards their classifica-
tion into virulent and nonvirulent types.

5 | CONCLUSION

A new version of the VirulentPred has been developed
for classifying virulent and nonvirulent proteins with
higher efficiency. The new user-friendly standalone

TABLE 7 Performance of best models from VirulentPred 2.0 and VirulentPred with latest test dataset.

Data description
Validation dataset
performance Test dataset performance

Model type Accuracy Sensitivity Specificity Accuracy MCC

VirulentPred 2.0 (Cascade classifier-based model) 100 79.11 86.49 82.82 0.66

VirulentPred (Cascade SVM-based classifier model) N/A 77.48 74.01 75.74 0.52

VirulentPred 2.0 (PSSM profile-based model) 84.71 85.33 85.02 85.18 0.70

VirulentPred (PSSM profile-based model) N/A 68.44 79.88 74.19 0.49

Abbreviation: SVM, support vector machines.
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version of VirulentPred 2.0 using local computers can
classify a few protein sequences to whole bacterial pro-
teomes in a high-throughput mode. In future, we will
develop VirulentPred further to include functions like
nucleotide sequence-based predictions.
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