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typically 22 nucleotides (nts) long with a range between 
19 nt and 24 nt. The antecedents of miRNAs are stem-loop 
intermediates, which are about 60 nt to 70 nt long and are 
known as precursor miRNAs (pre-miRNAs). pre-miRNAs 
are generated through the nuclear cleavage of primary miR-
NAs (pri-miRNAs) by the action of Drosha in complex with 
its cofactor DGCR8 (DiGeorge syndrome critical region 
8) (Bartel 2004). Mature miRNAs are in turn generated by 
the cleavage of pre-miRNAs by Dicer (Bartel 2004). miR-
NAs can be categorized as canonical miRNAs and mirtrons. 
Canonical miRNAs are generated through the cleavage of 
pri-miRNA and pre-miRNAs by Drosha and Dicer, respec-
tively. Mirtrons are spliced from the intronic regions of the 
pre-mRNA transcripts by spliceosome (Titov and Voro-
zheykin 2018). The first discovered pre-miRNA was lin-4, 
which regulates the lin-14 mRNA (Lee et al. 1993). Several 
studies are now focussing on the identification of sequences 
that can serve as potential pre-miRNAs (Lee et al. 1993). 
Identifying pre-miRNAs and miRNAs is critical to under-
stand their roles in regulating gene expression.

Introduction

MicroRNAs (miRNAs) play significant roles in post-tran-
scriptional gene regulation. miRNAs are non-coding RNA 
(ncRNA) molecules that influence several biological pro-
cesses including tumor growth, cell survival, proliferation 
and apoptosis (Ganju et al. 2017). Animal microRNAs are 
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MicroRNAs (miRNA) are categorized as short endogenous non-coding RNAs, which have a significant role in post-tran-
scriptional gene regulation. Identifying new animal precursor miRNA (pre-miRNA) and miRNA is crucial to understand 
the role of miRNAs in various biological processes including the development of diseases. The present study focuses on 
the development of a Light Gradient Boost (LGB) based method for the classification of animal pre-miRNAs using various 
sequence and secondary structural features. In various pre-miRNA families, distinct k-mer repeat signatures with a length 
of three nucleotides have been identified. Out of nine different classifiers that have been trained and tested in the present 
study, LGB has an overall better performance with an AUROC of 0.959. In comparison with the existing methods, our 
method ‘pmiRScan’ has an overall better performance with accuracy of 0.93, sensitivity of 0.86, specificity of 0.95 and 
F-score of 0.82. Moreover, pmiRScan effectively classifies pre-miRNAs from four distinct taxonomic groups: mammals, 
nematodes, molluscs and arthropods. We have used our classifier to predict genome-wide pre-miRNAs in human. We find 
a total of 313 pre-miRNA candidates using pmiRScan. A total of 180 potential mature miRNAs belonging to 60 distinct 
miRNA families are extracted from predicted pre-miRNAs; of which 128 were novel and are note reported in miRBase. 
These discoveries may enhance our current understanding of miRNAs and their targets in human. pmiRScan is freely 
available at http:​​​//w​ww.​csb.ii​tk​gp​​.ac.in​/appli​​cations​/​pmi​RS​can/index.php.
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Experimental methods for identifying pre-miRNA and 
miRNAs are expensive and time consuming (Yones et 
al. 2018; Fu et al. 2019). This can be complemented by 
developing computational methods for their genome-scale 
identification. Compared to a large number of hairpin-like 
sequences present in a whole genome, the known pre-miR-
NAs deposited in databases such as MirGeneDB(Fromm 
et al. 2022) and miRBase (Griffiths-Jones 2006) are sub-
stantially low (Bugnon et al. 2021). At the sequence level, 
ncRNAs including pre-miRNAs and miRNAs differ from 
the protein-coding genes. Distinguishing pre-miRNAs from 
other ncRNAs is challenging since other ncRNAs are also 
capable of forming similar stem-loop structures (Xue et 
al. 2005). However, pre-miRNAs form a stable secondary 
stem-loop structure with higher number of base pair in their 
stem. On the other hand, ncRNAs including circRNAs and 
lncRNAs can attain multiple secondary structure conforma-
tions due to their increased length. In addition, stem loop in 
pre-miRNA contains a 2 nts 3′ overhang, which facilitates the 
binding of DICER (Jouravleva et al. 2022). Consequently, 
computational pipelines can be used to identify the charac-
teristic features of pre-miRNA for their classification and 
prediction. Sequence conservation-based methods compare 
known miRNAs with their orthologs in different species. 
When considering metazoans, miRNAs of Fugu rubripes 
(puffer fish) and Danio rerio (zebra fish) share homology 
with human and mice miRNAs (Chen et al. 2005). Machine 
learning-based methods leverage characteristic attributes of 
pre-miRNAs and miRNAs to identify novel pre-miRNAs 
and miRNAs. Around 30 miRNA families are shared in all 
bilaterian animals comprising the major group of metazo-
ans (Praher et al. 2021). Utilizing sequencing data and a 
probabilistic model of miRNA synthesis, experimental data-
driven methodologies assess the compatibility between the 
position and frequency of sequenced RNA and the second-
ary structure of the pre-miRNA (Nazarov and Kreis 2021). 
These techniques are also used to identify miRNA signatures 
from miRNA-mediated regulatory networks to predict the 
prognosis of various diseases (Vafaee et al. 2018). Machine 
learning techniques are frequently used to classify the pre-
miRNAs from other pseudo pre-miRNAs of similar length, 
which are also capable of forming stem-loop structures (Ma 
et al. 2018). Furthermore, it has been discovered that differ-
ent categories of ncRNAs share common patterns with hair-
pin secondary structures (Hertel and Stadler 2006; Batuwita 
and Palade 2009). Support Vector Machine (SVM) based 
classifiers including MicroPred, triplet-SVM, YamiPred, 
HuntMi and miRNAss utilize sequence and structural infor-
mation for pre-miRNA classification (Batuwita and Palade 
2009; Kleftogiannis et al. 2015; Stegmayer et al. 2019). 
mirExplorer is a miRNA classification tool based on Ada-
Boost for detecting miRNAs in next-generation sequencing 

data (Guan et al. 2011). piRNApred server, a SVM based 
approach to predict piRNAs, uses features including k-mers, 
thermodynamic parameters and sequence-structure triplet 
elements, which were first described in triplet-SVM (Xue et 
al. 2005). The triplet-SVM features influence the folding of 
RNA and stabilizes their secondary structure configuration. 
These features are also used widely in pre-miRNA predic-
tion tools such as MicroPred (Batuwita and Palade 2009), 
HuntMi (Gudyś et al. 2013), MiPred (Jiang et al. 2007) and 
MiReval (Ritchie et al. 2008). Several machine learning 
classifiers have been used for the prediction of pre-miRNAs 
and miRNAs (Parveen et al. 2020). Although SVM and 
Naive Bayes classifiers are powerful for binary classifica-
tion, yet their performance tend to decrease when dealing 
with large-scale datasets in terms of both speed and accu-
racy. Boosting algorithms including AdaBoost struggle in 
dealing with data characterized by non-linear relationships. 
XGBoost, being robust and sclable, uses more memory and 
becomes computationally intensive with large-scale data-
sets. LightGBM, a histogram-based learning approach, is 
capable of efficiently handling biological datasets that pos-
sess high complexity and dimensionality (Wang et al. 2017; 
Liang et al. 2021).

In addition, several Deep learning tools including dnnPre-
miR-master, cnnMirtronPred-master and DeepMir-master 
have been developed for the human pre-miRNA classifi-
cation (Zheng et al. 2020). In recent studies, deep learn-
ing classifiers including deepBN, bb-DeepMir, deeSOM 
and MirDeep gained significant importance and are being 
widely used for genome-wide classification of pre-miRNAs 
(Raad et al. 2022). Deep learning algorithms require large 
scale dataset and extensive training for making a general-
ized prediction of unknown data. Moreover, the nature of 
the decision making process of deep neural networks is 
difficult to comprehend. LightGBM requires less training 
times and lesser amount of labelled data for efficient clas-
sification (Wang et al. 2017; Ponsam et al. 2021).

The present study incorporates sequence and structural 
features including mononucleotide, dinucleotide, k-mer 
content, AU content, GC content, normalized base pairing 
propensity (Npb), minimum folding energy (MFE), nor-
malized base pairing distance (ND) and normalized Shan-
non entropy (NQ) to effectively classify pre-miRNAs. Two 
major intrinsic properties are the AU content and the length 
of miRNA, which influence the ability to fold a secondary 
structure through canonical and non-canonical base pairing 
(Barik and Das 2018; Amin et al. 2019; Nithin et al. 2022). 
We have trained and tested nine distinct classifiers using 
the selected features. The LGB classifier outperforms all 
other classifiers with the highest accuracy (0.93), sensitivity 
(0.86), specificity (0.95), F-score (0.82) and AUC (0.959). 
The developed classifier will contribute to the advancement 
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of our understanding of pre-miRNAs by improving their 
genome scale identification across different animal spe-
cies. We have implemented the classifier into a web server 
‘pmiRScan’, which is freely accessible at ​h​t​t​​p​:​/​/​​w​w​w​​.​c​s​​b​.​i​​i​
t​k​​g​p​.​a​​c​.​​i​n​/​a​p​p​l​i​c​a​t​i​o​n​s​/​p​m​i​R​S​c​a​n​/​i​n​d​e​x​.​p​h​p​​​​​.​​

Materials and methods

Dataset construction

pre-miRNA sequences were retrieved from miRbase v22 
(Griffiths-Jones 2006). miRBase contains pre-miRNA 
(hairpin loops) sequences, their genomic location and the 
mature miRNA sequence contained in them (Kozomara 
et al. 2019). We have classified animal pre-miRNAs from 
the pseudo-hairpins. The positive set includes animal pre-
miRNAs and the negative set includes sequences obtained 
from the coding regions of different metazoan genomes. 
Coding regions serve as reliable negative dataset (Mendes 
et al. 2009). Both pre-miRNAs and coding regions are capa-
ble of forming stem-loop secondary structures. The extent 
of base pairing in the stem region of a coding sequence is 
considerably lower in comparison to the stem region of a 
pre-miRNA. This corresponds to a stable conformation and 
lower folding energy of pre-miRNA. In addition, pre-miR-
NAs contain specific motifs such as ‘GUG’ or ‘GGU’ near 
the loop region (Takashima et al. 2022). These motifs facili-
tate the binding of Drosha to generate pre-miRNAs from 
pri-miRNAs. Since the study focusses on classifying animal 
pre-miRNAs, we have considered the metazoan pre-miRNA 
sequences. Curation of the dataset was done by eliminating 
ambiguous characters like “N” and degenerate letters for 
bases. Recurrent sequences were removed from the dataset 
using CD-HIT with a sequence identity threshold of 0.8 and 
query coverage of 0.9 (Li and Godzik 2006).

Positive dataset

miRBase v22 contains 38,589 pre-miRNA sequences, of 
which 29,562 are metazoan pre-miRNAs from 148 differ-
ent species. After redundancy removal, 16,364 sequences 
were retained. RNAfold in Vienna 2.5 (Lorenz et al. 2011) 
was used to obtain the secondary structures of human pre-
miRNA. RNAfold is a well-recognized and widely used 
tool for the prediction of RNA secondary structures. It uses 
thermodynamic models to generate ensemble of secondary 
structures from which a consensus secondary structure is 
obtained. Moreover, the versatility of RNAfold in handling 
different types of RNA, including mRNA, makes it more 
useful than the other secondary structure prediction tools 
(Gardner and Giegerich 2004). We set the temperature at 

37 °C and used ‘noLP’ to generate secondary structures free 
from dangling ends.

Negative dataset

We used the sequences retrieved from coding regions of 
six animal species available in NCBI ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​n​c​b​i​.​n​l​
m​.​n​i​h​.​g​o​v​/​r​e​f​s​e​q​​​​​)​. The intronic and the non-coding exonic 
regions were removed from the coding sequences using 
BEDtools (Quinlan and Hall 2010). Moreover, we con-
firmed the absence of any miRNA or pre-miRNA sequences 
in the coding sequences comprising the negative training set. 
Sequences with lengths similar to that of pre-miRNAs were 
extracted followed by the removal of redundant sequences. 
The final negative dataset contains 22,337 mRNAs.

We have used 80:20 split ratio to construct training and 
testing datasets. Stratified splitting was used to maintain 
class balance. The training set contains 12,931 and 17,124 
instances of the positive and the negative datasets, respec-
tively. The test set contains 3233 positive and 4281 nega-
tive instances. The remaining 201 positive and 932 negative 
instances were considered as the validation set, which was 
not used during the training of the different classifiers.

Feature extraction

The length of pre-miRNA is one of the important features 
used in the prediction model. In our dataset, the length of 
pre-miRNAs varies from 50 nts to 150 nts, which covers the 
99% probability range of the length distribution. The length 
of the coding sequences was also kept in similar range in 
order to match the sequence and secondary structure char-
acteristics of pre-miRNAs. This improves the predictive 
performance and reduces false positives. In the current 
study, we extracted both sequence and structural features 
along with triplet-SVM features (Xue et al. 2005) for the 
classification of pre-miRNAs. We have used four mono-
nucleotides, sixteen di-nucleotides and sixty-four k-mer of 
length three nucleotides as the sequence features. In order 
to account for the variability in pre-miRNA length, k-mers 
were normalised per 100 nucleotides (Nithin et al. 2015, 
2017, 2022).

R = nkmer

L
× 100� (1)

Here, nkmer is the number of k-mer signatures present in 
the pre-miRNA sequence. L is the length of the pre-miRNA 
sequence.

Secondary structures of the pre-miRNA sequences were 
calculated using RNAfold with default parameters. The 
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of a variable based on the target variable. This method is 
much faster and more robust against overfitting. We have 
used two different feature selection methods: embedded and 
filter. In embedded feature selection, Least Absolute Shrink-
age and Selection Operator (LASSO) regression(Ranstam 
and Cook 2018) was used. In filter feature selection, mutual 
information was used (Vergara and Estévez 2014). LASSO 
shrinks the features in linear combination to a probability 
space between 0 and 1. This method minimizes the sum of 
squared residuals using a penalizing factor. The LASSO 
regression can be written as:

Llasso

(
β̂

)
=

∑
n
i=1

(
yi − xT

j β̂
)2

+ λ
∑

m
j=1

∣∣∣β̂ j

∣∣∣� (8)

where, 
∣∣∣β̂ j

∣∣∣ is the absolute value of the slope and 

λ ∈ (0, ∞ ) . Mutual information is calculated using the 
joint probability to determine the similarity between a fea-
ture and the target variable.

∑
l∈ l

∑
m∈ mp (l, m) log

[
p(l, m)

p (l) p (m)

]
� (9)

Here, l and m refer to the feature and target variable, respec-
tively. Embedded learning approaches other than LASSO 
include Ridge regression and Elastic Net (Gonzales and De 
Saeger 2018; Ranstam and Cook 2018). LASSO introduces 
a ‘L1’ regularization penalty to the loss function (refer to 
Eq. 8). It affects the loss function by shrinking the coeffi-
cient β̂ j  to absolute zero, thereby helping to remove the 
insignificant features. On the other hand, Ridge uses ‘L2’ 
regularization, which reduces coefficients but does not set 
them to zero, resulting in the retention of unimportant fea-
tures. In addition, LASSO enhances the model simplicity 
in comparison to the Elastic Net, which uses a combination 
of ‘L1’ and ‘L2’ penalty (Pudjihartono et al. 2022). Mutual 
information has the ability to handle a wide range of data 
types and to capture non-linear relationships between the 
feature variables. Other filter-based approaches including 
ANOVA and correlation-based feature selection are limited 
by their capabilities to handle only specific data type and 
capture only the linear relationship (Nasiri and Alavi 2022; 
Pudjihartono et al. 2022). In the present study, application of 
mutual information generates a subset of features followed 
by LASSO regression. The feature subset resulting from 
the above feature selection methods were finally considered 
for training classifiers. We selected 28 distinguishing fea-
tures that best classified the animal pre-miRNAs from the 
pseudo-hairpins.

genRNAstats program was used for the calculation of the 
RNA folding measures (Nithin et al. 2015).

NMFE = − (MFE x 100)
L

� (2)

Here, L is the sequence length. The base pair probability 
distribution (BPPD) was used for calculating ND and NQ. 
The base pair probability pij between the bases of i and j was 
calculated using the MaCaskill algorithm described by the 
following equations (Lorenz et al. 2020).

pij =
∑

Sα ∈ S(s)P (Sα ) δ ij � (3)

P (sα ) = e
−E
RT

∑
Sα ∈ S(s)e

−E
RT

� (4)

δ ij =
{

1, xi pairs xj
0, otherwise � (5)

NQ = −1
L

∑
i<jpij · log (pij)� (6)

ND = −1
L

∑
i<jpij(1 − pij)� (7)

Features of triplet-SVM are represented by the base pairing 
of three consecutive nucleotides following a base in a stem. 
These features are represented by a dot and parentheses 
such as ‘A(.(’, where a ‘.’ represents an unpaired base and 
a ‘(’ represents a paired base. The features are derived from 
RNAfold notation for secondary structures. These give 32 
features in all (Xue et al. 2005). In addition to the above fea-
tures, ensemble diversity, ensemble energy and the number 
of base pair in each stem in case of multi-loop pre-miRNAs 
were also calculated. Finally, a total of 125 features were 
extracted.

Feature selection

Selecting the best features to distinguish the classes is a 
key aspect of machine learning. Feature selection methods 
can be classified as embedded, wrapper and filter-based 
(Stańczyk 2015; Chen et al. 2020). The embedded method 
determines the interaction between the features and the tar-
get variable subject to the learning process of a model. The 
feature subsets in this method differ based on the model. 
Wrapper employs different feature subsets for model train-
ing and the evaluation of feature subsets is done based on 
the model performance. This method is considerably slower 
than the embedded method. Filter measures the dependency 
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nine different classifiers. The performance of each classifier 
was evaluated using the following metrics.

Sensitivity = TP

TP + FN
� (10)

Specificity = TN

TN + FP
� (11)

F − score = TP

TP + 1
2 (FP + FN) � (12)

Accuracy = TN + TP

TN + TP + FN + FP
� (13)

The LGB classifier is implemented in the web server since 
it outperformed all the other classifiers in terms of perfor-
mance metrics. We have also performed a 10-fold cross-
validation, which resulted in an overall accuracy of ~ 95%.

Comparison with the existing classifiers

The existing classifiers including microPred, miPred and 
triplet-SVM are SVM-based classifiers (Suthaharan 2016). 
SVMs are known for their capability to handle high-
dimensional data, robustness to overfitting and efficient 
handling of data imbalance. However, they are slower for 
very large datasets in comparison to other classifiers. On 
the other hand, classifiers based on deep learning such as 
deepPremiR, mirDNN and cnnmiRtron are comparatively 
faster (Zheng et al. 2020; Yones et al. 2021; Tasdelen and 
Sen 2021).

Computational validation

For computational validation, we retrieved pre-miRNA 
sequences of four different taxonomical groups of metazo-
ans including mammals, arthropods, molluscs and nema-
todes from RNAcentral (Petrov et al. 2017). RNAcentral is 
a ncRNA database comprising sequences from several other 
databases including miRBase, piRBase, Rfam, Ensembl and 
NONCODE. We removed the pre-miRNA sequences, which 
are also present in miRBase. Furthermore, we retrieved the 
coding sequences from RefSeq for the four taxonomical 
groups. Finally, we tested our classifier on four different 
dataset constructed using a subset of positive and negative 
instances from RNAcentral and RefSeq, respectively.

Prediction of genome-wide human pre-miRNAs

The classifiers constructed in this study were used for 
the genome-wide prediction of human pre-miRNAs. We 

Class imbalance

One of the most common issues in machine learning is class 
imbalance. In practice, the methods to remove class imbal-
ance in the dataset are under-sampling and over-sampling 
(Niaz et al. 2022). Under-sampling refers to a reduction of 
majority class samples to match with minority class sam-
ples. This improves the prediction accuracy for the minor-
ity class. However, under-sampling can result in the loss 
of important information in the majority class. Conversely, 
over-sampling aims to augment the class size of minority 
groups in order to prevent the loss of knowledge. Synthetic 
minority over-sampling technique (SMOTE) constructs 
synthetic examples of the minority class, thus minimizing 
the possibility of overfitting (Torgo et al. 2013; Fernandez 
et al. 2018). In this study, our training set contains 16,364 
positive and 22,338 negative instances, thus suffering a 
class imbalance. SMOTE was applied to remove the class 
imbalance between positive and negative instances with a 
random state of 5 and k-neighbour value of 5.

Classifier selection

Several classifiers were trained and tested on the dataset fol-
lowing the feature selection and class imbalance removal. 
The scikit-learn module in python was used for implement-
ing the classifiers (Bisong 2019). To compare the perfor-
mance metrics, the following nine classifiers were trained: 
SVM with RBF kernel, XGBoost, Random Forest, Gauss-
ian Naive Bayes, AdaBoost, LGB, Gradient Boost, Decision 
Tree and k-Nearest Neighbor (kNN) clustering (Natekin and 
Knoll 2013; Kotsiantis 2013; Suthaharan 2016; Chen and 
Guestrin 2016; Rigatti 2017; Zhao et al. 2021; Solomatine 
and Shrestha 2004). We have also trained boosting classi-
fiers since they are capable of performing binary classifi-
cation. The nine classifiers tested in this study belong to 
various classes of machine learning algorithms. Tree-based 
methods such as LGB, Random Forest, Gradient Boost, 
XGBoost, Decision Tree and AdaBoost split the data using 
trees based on the threshold values of features that repre-
sent nodes. This allows them to capture feature interactions 
effectively. Gaussian Naive Bayes (GNB) is a probabilistic 
approach that simplifies prediction considering features as 
conditionally independent. GNB can thus handle large num-
ber of features. SVM and kNN clustering are distance-based 
approaches, which requires minimal assumptions. They are 
capable of dealing with non-linear relationships between the 
features in a dataset. The training dataset used in this study 
contains a large number of different class of features that 
possess non-linear relationships. In order to account for such 
complexity, the authors have considered the aforementioned 
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overhangs. The matured miRNA is located at the arms of a 
stem-loop structure (Zhu et al. 2011). Figure 1 shows the 
secondary structure of the human pre-miRNA hsa-mir-3652 
having a length of 131 nts.

Sequence length and AU content

Previous studies show that the AU-rich elements (ARE) are 
organized into several classes and clusters at the 3’ untrans-
lated regions (3’ UTRs) of mRNAs. In the early response 
genes such as lymphokines and cytokines, a characteris-
tic ARE “​U​U​A​U​U​A​U​U” is responsible for inflammatory 
response and destabilization of mRNA (Garg et al. 2021). 
A significant number of human protein-coding genes con-
tain AREs. The mRNA decay is initiated by miRNAs and 
lncRNAs, which recognize ARE in mRNA. The decay pro-
ceeds by poly(A) tail shortening followed by the mRNA 
degradation (Rissland et al. 2017). However, the mecha-
nism by which miRNAs recognize the AREs remains elu-
sive. The length distribution of metazoan miRNA is shown 
in Fig. 2. Considering the 99% probability range, the AU 
content in pre-miRNAs varies from 20% to 80% (Fig. 3a). 
The pre-miRNA length varies from 45 nt to 150 nt (Fig. 3b) 
when considering the 99% probability range.

Secondary structure

Compared to other ncRNAs or coding RNAs, most of the 
nucleotides in pre-miRNAs form base pairs leading to 
the formation of a stem-loop structure. The existence of a 
matured miRNA in one of the arms of a stem-loop structure 

retrieved 1917 human pre-miRNAs and 2656 human 
miRNAs from miRbase v22. After removing the redun-
dancy, we retained 1901 pre-miRNAs and 2157 miRNA 
sequences. Human EST and GSS sequences were down-
loaded from NCBI (https://www.ncbi.nlm.nih.gov/). The 
protein sequences were obtained from UniProtKB ​(​​​h​t​t​p​s​:​/​
/​w​w​w​.​u​n​i​p​r​o​t​.​o​r​g​/​​​​​)​, which contains 204,063 human ​p​r​o​t​e​i​
n sequences. After removing the redundancy, we retained 
44,856 sequences. Non-redundant human pre-miRNAs were 
searched as a query using BLAST ​(​​​h​t​​t​p​s​​:​/​/​b​​l​a​​s​t​.​n​c​b​i​.​n​l​m​.​n​
i​h​.​g​o​v​/​B​l​a​s​t​.​c​g​i​​​​​) with the non-redundant human EST and 
GSS sequences as subjects, followed by the extraction of 
upstream and downstream regions of the resultant sequences 
between lengths 50 nt to 150 nt. In order to exclude the 
protein-coding sequences, an un-gapped BLASTX with 
a sequence identity cut-off > 80% was performed using 
extracted sequences as query and non-redundant protein 
sequences of human as subject. To identify the presence of 
mature miRNAs, human non-redundant mature miRNAs 
were searched in the remaining non-coding sequences using 
BLAST. The resulting non-coding sequences were classified 
using pmiRScan to predict putative human pre-miRNAs.

Results and discussion

pre-miRNAs are critical biomolecules and mature into miR-
NAs. Some pre-miRNAs give rise to multiple miRNAs. 
Several features are used in this study to classify pre-miR-
NAs. pre-miRNAs are distinguished by a stem-loop struc-
ture, which may also include internal loops, bulges and short 

Fig. 2  Distribution of the length 
of metazoan miRNAs
 

Fig. 1  Secondary structure of human pre-miRNA hsa-mir-3652. The black region shows the loop and the blue region shows the matured miRNA
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are symmetric, whereas the distributions of ND and NQ 
are skewed. The average base pairs including AU, GC and 
GU wobble pair per stem are also calculated. On average, 
the occurrence of GC pair per stem is the highest, compris-
ing ~ 15% of the paired and the unpaired bases. AU pair 
comprises ~ 14% and the GU wobble pair being the lowest, 
comprises ~ 4%.

K-mer frequency

In general, k-mers of less than six nucleobases are consid-
ered to curb the high dimensionality of vectors representing 
the statistical samples. In addition, k-mer location and the 
distance between the first k-mer and the terminal k-mer are 
also used as features. k-mer signatures in pre-miRNAs vary 
between different metazoan species (Yousef and Allmer 
2021). Consequently, they can also be employed to cat-
egorize pre-miRNA candidates according to their species 

is a prerequisite for the prediction of pre-miRNAs. The 
folding of a sequence is determined by several thermody-
namic factors. The accuracy in the prediction of the second-
ary structure of a pre-miRNA is constrained by inadequate 
knowledge of folding principles. To counter this, several 
possible structures are constructed for a given sequence. 
The partition function (Q) is the total of the equilibrium 
constants of all potential secondary structures, which 
defines the ensemble thermodynamic properties of a sys-
tem. An ensemble of secondary structures of pre-miRNAs 
is generated using RNAfold, which calculates the minimum 
folding energy structure based on the equilibrium partition 
function and base pair probability distance. The various 
RNA folding measures include MFEI, Npb, NQ, ensemble 
energy and ensemble diversity. Considering 99% probabil-
ity range, MFEI varies from  -1.0 to -0.15, ND varies from 
0.0 to 0.2, Npb varies from 0.2 to 0.45 and NQ varies from 
0.0 to 0.4 (Fig. 3c-f). The distributions of MFEI and Npb 

Fig. 3  Probability distributions 
of (a) AU content, (b) Length 
of pre-miRNAs, (c) Minimum 
Folding Energy Index (MFEI), 
(d) Normalized base pairing dis-
tance (ND), (e) Normalized base 
pairing propensity (Npb) and (f) 
Normalized Shannon Entropy 
(NQ)

 

1 3

Page 7 of 16      9 



Functional & Integrative Genomics            (2025) 25:9 

of origin. In the present study, the frequency of k-mers of 
length three nucleotides is calculated for the pre-miRNA 
sequences with a window size of three. The distribution 
of the k-mers is shown in Fig.  4. Since the pre-miRNA 
sequences are of varying lengths, k-mers are normalized 
per 100 nts. Although the k-mers among the different pre-
miRNA families are not conserved, yet they are conserved 
within the same family (Kozomara et al. 2019). k-mer sig-
natures CAG, CUG, GUG, UCU, UGA, UGG, UGU, UUG 
and UUU occur at least twice per 100 nts with UUU as the 
highest repeating with an R-value of 2.67. k-mers having a 
low occurring frequency are CGA, ACG, CCG, CGC, CGG, 
CGU, GCG and UCG with ACG being the least occurring 
with an R-value of 0.70.

Non-redundant features to train the classifiers

Feature selection involves removing redundant charac-
teristics and selecting a subset of features from the origi-
nal feature set. This facilitates the effective categorization 
of different classes in a dataset. Feature selection can be 
performed based on several criteria including correlation, 
dependence and information measure (refer to Materials 
and Methods section). We have performed feature selection 
on 125 extracted features calculated for both pre-miRNAs 
and coding sequences. Mutual information and LASSO 
regression are applied for the feature selection (Vergara and 
Estévez 2014; Ranstam and Cook 2018). Initially, mutual 
information is applied and the top 30 features with the high-
est scores are considered. LASSO regression is applied to 
the features selected from mutual information to obtain the 
final feature set. Eventually, out of 125 features, we retain 
28 features including 11 secondary structural features and 
17 sequence features to train the classifiers (Table 1). The 
selected features correlate less than 80% (Fig. 5). A combi-
nation of filter-based and embedded feature selection helps 
in identifying features that substantially contribute to the 
prediction capability of the model and have a significant sta-
tistical relationship with the target. Moreover, this method 
also reduces overfitting.

Selection and training of classifiers

Classifier selection is challenging while dealing with bio-
logical datasets due to their high complexity and dimension-
ality. Classification algorithms can be linear, distance-based 
and tree-based methods (Hemphill et al. 2014). The linear 
classifier employs a linear function to assign scores to dif-
ferent classes. This is done by calculating the dot prod-
uct of the feature values and the feature weights that are 
determined during the training process. The distance-based 
method calculates the number of closest matching samples 

Fig. 4  Distribution of k-mers of length three nt in pre-miRNAs. The 
k-mers ‘CUG’, ‘UGU’ and ‘UUU’ have the highest frequency of 
occurrence
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and assigns membership to the majority class. The tree-
based method constructs multiple trees, and their ensemble 
is used for making the final decision. We train nine differ-
ent classifiers belonging to three previously mentioned cat-
egories using selected features. The sensitivity, specificity, 
F-score and AUC are compared. Among the various classi-
fiers, LGB shows overall better performance (Table 2). The 
confusion matrix and the AUROC for different classifiers 
are shown in Figs. 6 and 7, respectively. Although Gradi-
ent Boost and LGB show similar performance, the latter is 
faster. Consequently, we select LGB for the classification 
of pre-miRNAs and implemented in webserver. Finally, a 
10-fold cross-validation is performed on the training and the 

Table 2  Performance comparison among the nine different classifiers
Accuracy Sensitivity Specificity F-score

XGBoost 0.90 0.86 0.91 0.76
Light Gradient Boost 0.93 0.86 0.95 0.82
SVM 0.90 0.88 0.90 0.76
Gaussian Naïve Bayes 0.85 0.86 0.85 0.67
Gradient Boost 0.91 0.87 0.92 0.79
AdaBoost 0.81 0.79 0.81 0.60
Random Forest 0.87 0.85 0.88 0.70
Decision Tree 0.85 0.85 0.86 0.68
K-Nearest Neighbor 0.86 0.82 0.88 0.68

Fig. 5  Heatmap showing the correlation of the twenty-eight selected features with correlation < 80%

 

Sl no. Sequence Structural
Dinucleotide 
features

k-mer features
(length = 3nts)

Themodynamic 
features

Sequence-
structure triplet 
elements

(Percent 
base-pair)/
(No.of 
stem-loop)

1. %AA %AAC Npb A.( %(G-C)/n
2. %AU %AAU MFEI A… %(A-U)/n
3. %GC %CAA NQ U… %(G-U)/n
4. %GG %CAG G…
5. %GU %CUG C…
6. %UA %GCU
7. %UG %GGC
8. %GUG
9. %UGC
10. %UGG

Table 1  List of 28 features 
obtained after feature selection
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Fig. 7  AUROC curve for the 
prediction of pre-miRNAs using 
nine distinct classifiers

 

Fig. 6  Confusion matrices show-
ing the performance of nine 
distinct classifiers
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When two ROC curves intersect, the AUC of one curve 
can be greater even when the model performance is poor 
(Robinson et al. 2020). The AUROC can be utilized in con-
junction with sensitivity and specificity to effectively assess 
the performance of the model. In our study, the maximum 
AUROC is obtained for the nematodes and molluscs.

Comparison with the existing classifiers

A comparative analysis is performed between pmiRScan 
and the existing classifiers microPred, dnnPreMiR, triplet-
SVM, miRNAs, HuntMi and mirDNN. The microPred, 
triplet-SVM, miRNAss and HuntMi use SVM to classify 
the animal pre-miRNAs. triplet-SVM is only capable of 
handling single-loop pre-miRNA structures. Other classifi-
ers are capable of dealing with multi-loop pre-miRNA sec-
ondary structures (Jiang et al. 2007). A comparison between 
pmiRScan and the other pre-existing classifiers is shown in 
Table 4 and Fig. 9. Although HuntMi has higher sensitivity, 
yet it lacks specificity and has a lower F-score compared to 

test datasets keeping the learning rate as 0.1 and number 
of estimators to 100. LGB outperforms other classifiers in 
terms of accuracy (0.93), sensitivity (0.86), specificity (0.95) 
and F-score (0.82) (Table 2). LGB and Gradient Boost both 
have the highest AUROC, but LGB is faster, more efficient 
and robust in handling data with high dimensionality com-
pared to Gradient Boost.

Computational validation

Various performance measures are employed in machine 
learning to assess the performance of a model. The perfor-
mance of our classifiers is evaluated on a validation set con-
taining 201 positive and 932 negative instances. They are 
not included in the training and the test datasets. In addition, 
we also test the performance of the classifiers on four dif-
ferent taxonomical datasets. The performance evaluation is 
shown in Table 3 with the maximum specificity of 0.9 for 
nematodes and the maximum sensitivity of 0.95 for arthro-
pods. The AUROC of the classifier for four different taxo-
nomical groups is shown in Fig. 8. While AUROC evaluates 
the performance of a classifier over a range of classifica-
tion threshold, it alone cannot effectively assess the model. 

Table 3  Performance evaluation of pmiRScan among the different 
taxonomic groups
Taxon Accuracy Specificity Sensitivity F-score
Mammals 0.83 0.84 0.82 0.79
Arthropods 0.83 0.81 0.95 0.76
Molluscs 0.92 0.89 0.91 0.90
Nematodes 0.92 0.90 0.93 0.85

Table 4  Comparison of the performance of pmiRScan with the exist-
ing classifiers
Classifier Accuracy Sensitivity Specificity F-score
microPred 0.79 0.83 0.78 0.58
dnnPreMiR-master 0.79 0.82 0.79 0.58
triplet-SVM 0.44 0.31 0.78 0.44
pmiRScan 0.93 0.86 0.95 0.82
HuntMi 0.86 0.90 0.85 0.71
mirDNN 0.84 0.83 0.84 0.39

Fig. 8  AUROC curve for the 
prediction of pre-miRNAs in four 
different taxonomical groups
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pmiRScan, triplet-SVM and dnnPreMiR-master are almost 
similar. However, pmiRScan outperforms other classifiers 
in terms of other performance metrics.

Prediction of putative human pre-miRNAs

The known non-redundant human pre-miRNAs from the 
miRbase v22 are searched as queries against non-redundant 
EST and GSS sequences of human. The resulting sequences 
are further processed using the procedure mentioned in 
the Materials and Methods section. Finally, a total of 313 
sequences are classified as pre-miRNAs by pmiRScan 
(supplementary Table S1). Extraction of mature miRNA 
sequences from the pre-miRNAs resulted in 180 miRNAs, 
of which 128 are novel (supplementary Table S2) and are 
not reported in miRBase. These mature miRNAs belong to 
60 different miRNA families. The highest populated family 
is MIR-548 with 58 mature miRNAs (Table 6). The number 

pmiRScan. pmiRScan also outperforms mirDNN(Yones et 
al. 2021) in terms of all the performance metrics. pmiRScan 
has an overall better performance in predicting the pre-miR-
NAs compared to other existing methods. The time taken 
for each classifier to classify sequences was evaluated in 
the present study (Table 5). Figure 10 represents log2(time) 
taken by each classifier. microPred and HuntMi take maxi-
mum duration while mirDNN takes the least duration for 
the classification of pre-miRNAs. The execution time for 

Table 5  Comparison of execution time for different classifiers
Classifier Time(sec) Log2(time)
Deepmir_master 42.12 5.39
HuntMi 57911.34 15.82
pmiRScan 62.73 5.97
MicroPred 34505.80 15.07
mirdnn 21.84 4.44
triplet-SVM 121.00 6.91

Fig. 10  Plot showing log2(time) 
for the different classifiers
 

Fig. 9  Performance comparison 
of pmiRScan with the existing 
classifiers
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novel pre-miRNAs in various metazoan species. Enriching 
our understanding of miRNAs will aid in mapping regula-
tory pathways and gene co-regulation. Moreover, miRNAs 
serve as biomarkers in various diseases including cancer 
and neurological disorders. Hence, their prediction might 
be useful in the development of diagnostic tools to moni-
tor disease progression. Newly discovered miRNAs may 
have the potential to be targeted for innovative therapeu-
tic strategies. miRNA mimics can be created to regulate 
the activity of miRNAs in disorders characterized by their 
abnormal gene expression. Thus, the identification of pre-
miRNAs will enhance our comprehensive understanding 
of gene regulation in animals, both at the transcriptional 
and post-translational levels.
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supplementary material available at ​h​t​t​​p​s​:​/​​/​d​o​​i​.​o​​r​g​/​1​0​.​1​0​0​7​/​s​1​0​1​4​2​-​0​
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of members in five miRNA families varies from two to 
seven, while 54 miRNA families contain only one miRNA 
each. The distribution of the length of the predicted miRNA 
is shown in Fig. 11. The majority of the miRNAs extracted 
from the predicted pre-miRNAs have a length of 22 nt.

Conclusion

The present study provides a fast and efficient approach to 
predict the animal pre-miRNAs using various sequence and 
structural features. We have trained and tested nine differ-
ent classifiers followed by a performance evaluation. The 
LGB classifier, implemented in pmiRScan, has the supe-
rior performance in comparison to all other classifiers with 
an accuracy of 0.93, sensitivity of 0.86, specificity of 0.95 
and F-score of 0.82. Moreover, pmiRScan outperforms 
the existing methods in predicting the pre-miRNAs of 
four different taxonomic groups. Being able to accurately 
classify the pre-miRNAs of different taxonomic groups, 
pmiRScan can be implemented for the identification of 

miRNA family Number 
of miR-
NAs

MIR-7;MIR-10;MIR-95;MIR-126;MIR-142;MIR-146;MIR-147;MIR-151;MIR-297;MIR-
302;MIR-466;MIR-499;MIR-511;MIR-516;MIR-523;MIR-526;MIR-576;MIR-590;MIR-644;-
MIR-659;MIR-663;MIR-1226;MIR-1279;MIR-1303;MIR-3116;MIR-3149;MIR-3606;MIR-
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6090;MIR-6716;MIR-6845;MIR-6861;MIR-6875;MIR-6878;MIR-7106;MIR-7112;MIR-
7851;MIR-10,400;MIR-12,124

1

MIR-518;MIR-570;MIR-1273 2
MIR-519 3
MIR-520 7
MIR-548 58

Table 6  Population of predicted 
miRNAs in different families

 

Fig. 11  Distribution of the length 
of human miRNAs predicted 
using pmiRScan
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