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Abstract

Metabolomics is a leading frontier of systems science and biomedical innovation. However, metabolite iden-
tification in mass spectrometry (MS)-based global metabolomics investigations remains a formidable challenge.
Moreover, lack of comprehensive spectral databases hinders accurate identification of compounds in global
MS-based metabolomics. Creating experiment-derived metabolite spectral libraries tailored to each experiment
is labor-intensive. Therefore, predicted spectral libraries could serve as a better alternative. User-friendly tools
are much needed, as the currently available metabolomic analysis tools do not offer adequate provision for users
to create or choose context-specific databases. Here, we introduce the MS2Compound, a metabolite identifi-
cation tool, which can be used to generate a custom database of predicted spectra using the Competitive
Fragmentation Modeling-ID (CFM-ID) algorithm, and identify metabolites or compounds from the generated
database. The database generator can create databases of the model/context/species used in the metabolomics
study. The MS2Compound is also powered with mS-score, a scoring function for matching raw fragment
spectra to a predicted spectra database. We demonstrated that mS-score is robust in par with dot product and
hypergeometric score in identifying metabolites using benchmarking datasets. We evaluated and highlight here
the unique features of the MS2Compound by a re-analysis of a publicly available metabolomic dataset
(MassIVE id: MSV000086784) for a complex traditional drug formulation called Triphala. In conclusion, we
believe that the omics systems science and biomedical research and innovation community in the field of
metabolomics will find the MS2Compound as a user-friendly analysis tool of choice to accelerate future
metabolomic analyses.

Keywords: metabolomics, MS2Compound, bioinformatics, systems science, data analysis, computational
biology, metabolite identification

Introduction

Metabolomics, the study of metabolites, is one of
the leading crucial frontiers of systems science and

omics technology innovation. Metabolomics provides novel
postgenomic insights in cell biology and deepens our un-
derstanding of biological systems’ metabolic phenotypes.

Advances in mass spectrometry (MS)-based metabo-
lomics, combined with use of multiple fractionation tech-
niques, have improved the identification of metabolic profile
in a sample (Cheng et al., 2018). Global or untargeted me-
tabolomics analysis results in vast amounts of data, which
poses challenges during data analysis. The basic steps of
metabolomics data analysis comprise identifying features by
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pre-processing MS-derived raw files, followed by a feature
assignment to metabolites (Cambiaghi et al., 2017). The
current strategies for metabolomics data analysis suffer from
several limitations. For example, different algorithms result
in different sets of pre-processed spectra, which increases the
number of false-positive peaks (Myers et al., 2017). More-
over, a comparative study (Considine et al., 2017) high-
lighted the lack of reproducibility of metabolomics data due
to limitations in reporting the analysis steps. The lack of
standard pipelines and algorithms for pre-processing MS-
derived spectra remains a bottleneck for the biomedical
community.

The identification of compounds/metabolites from MS/MS
spectra or features is a critical step in metabolomics data
analysis. This step is achieved by comparing metabolite
features with existing MS, and MS/MS spectra reference
databases (Blazenovic et al., 2018) such as Human Metabo-
lome Database (HMDB) (Wishart et al., 2018), METLIN
(Guijas et al., 2018), and LIPIDMAPS (Sud et al., 2007).
Although a large number of metabolites are curated in these
repositories, the metabolite information is mostly restricted
to those from well-studied species.

A recent metabolomic study identified the compounds of
Mycobacterium tuberculosis (Mtb) by using an Mtb-specific
compound library as the reference database (Collins et al., 2018).
However, these Mtb compounds were not assigned in a previous
study by the same group using LIPIDMAPS and METLIN
(Frediani et al., 2014). In another study, Wang et al. (2019) used
an Astralagus-specific database from SciFinder with NIST
(https://www.nist.gov/srd/nist-standard-reference-database-
1a-v17) and METLIN for the identification of metabolites
present in Astragalus mongholicus and Astragalus mem-
branaceus. Several compound databases have been devel-
oped for various species such as E. coli Metabolome
Database (ECMDB) (Sajed et al., 2016), Livestock Meta-
bolome Database (LMDB) (Goldansaz et al., 2017), and
Yeast Metabolome Database (YMDB) (Ramirez-Gaona
et al., 2017), which improved identification of the metab-
olites in the given species.

MZmine2 (Pluskal et al., 2010) and XCMS (Huan et al.,
2017; Tautenhahn et al., 2012) are two widely used tools for
analyzing metabolomics data. XCMS, which uses METLIN
as a reference database for compound identification, provides
in-built species-specific metabolites only for a limited num-
ber of organisms. In contrast, MZmine2 allows for use of any
custom database; however, such a search is restricted to the
precursor level. Besides, the HMDB web service (Wishart
et al., 2007) can be used to identify the compounds from
MS/MS spectra; however, it does not allow the use of a
custom database of the user’s choice.

Several studies have recently focused on metabolite
identification approaches in the absence of reference data-
bases (Allen et al., 2014; Djoumbou-Feunang et al., 2019;
Gil-de-la-Fuente et al., 2019; Li et al., 2013). A hybrid search
approach has been proposed to find the metabolites without
any known spectral information, which combines direct peak
matches along with neutral loss peak matches. This approach
has shown an increase in the number of identifications
(Cooper et al., 2019). MetDNA, a recursive algorithm based
on metabolic reaction network (MRN), was developed to
annotate metabolites without the back-end spectral library
(Shen et al., 2019). This algorithm is based on finding the

seed metabolites followed by annotation of metabolites with
the reaction-paired neighbor metabolites in a recursive
manner.

Further, machine learning-based approaches have been
utilized to predict MS/MS fragment masses of metabolites.
A random-forest-based model, SubFragment-Matching, can
be used to predict MS/MS fragments based on known spectra
of a compound with structural similarity (Li et al., 2020). An
imputation-based mass-to-charge ratio (m/z) match within
different datasets has been implemented to predict the bio-
logical role and pathway analysis of unknown features in the
metabolomics experiment (Hsu et al., 2019). However, de-
spite such efforts being undertaken toward identification of
the metabolites without MS/MS spectral information, there
are very few approaches toward the identification of com-
pounds from the custom metabolite databases.

It is not economically viable to create an experimental
spectral library for a particular experiment. In such cases, the
prediction of MS/MS fragments can serve as a potential al-
ternative. Advancement in the algorithms for the prediction
of MS/MS spectra and their high accuracy rate has paved the
way for creating custom compound libraries (Blazenovic
et al., 2018). These custom databases can be used for the
better identification of metabolites from corresponding data.
SIRIUS, a tool for identifying metabolites from MS/MS in-
formation, has been developed by integrating the CSI:
FingerID algorithm (Duhrkop et al., 2019).

In the current study, we used the Competitive Fragmentation
Modeling-ID (CFM-ID) (Allen et al., 2014), an algorithm that
predicts metabolite fragment masses, to create a custom data-
base and developed a pipeline to analyze global or untargeted
metabolomics data using custom databases. The CFM-ID al-
gorithm uses probabilistic generative models for prediction of
the MS/MS spectra for a given compound structure.

We also designed a new scoring function for MS/MS
matches, which can improve the accuracy of compound
identification. The developed scoring function showed a ro-
bust performance to the existing scoring strategies for
MS/MS spectra match. The pipeline can be accessed with a
user-friendly Graphical User Interface (GUI), named the
MS2Compound (https://github.com/beherasan/MS2Compound,
https://sourceforge.net/projects/ms2compound), without prior
dependencies for easy and accurate compound identification.
The MS2Compound will allow creating a custom database by
using the CFM-ID algorithm and for the identification of
compounds from metabolomics datasets.

Materials and Methods

Development of a spectral database for compounds
found in different species

Compounds for the selected species (Supplementary
Table S1) were downloaded from BioCyc (https://biocyc
.org) (Caspi et al., 2016) in flat-file format. Alongside, a
compound list containing 101 plant species was downloaded
from the PlantCyc database (https://plantcyc.org). Unique
IDs from BioCyc, along with their Simplified Molecular-
Input Line-Entry System (SMILES), were used for the pre-
diction of fragment ions using CFM-ID (version 2.4; https://
sourceforge.net/projects/cfm-id) (Allen et al., 2014).
SMILES ID stores the information of a chemical structure in
a computer-readable format. This is one of the ways of
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representing a chemical structure. The MS/MS fragmentation
patterns were predicted in both positive and negative mode,
in all three: low (10 V), medium (20 V), and high (40 V)
collision energy levels.

Other public resources

The predicted and experimental MS/MS spectra from
HMDB (released on 01-09-2019; https://hmdb.ca) (Wishart
et al., 2018) were downloaded in Extensible Markup Lan-
guage (XML) format, in addition to the databases mentioned
earlier. Fragment ion information from both experimental
and predicted data was extracted for the corresponding pri-
mary IDs of HMDB. A list of polyphenols contents in foods
was downloaded from Phenol-Explorer Version 3.6 (http://
phenol-explorer.eu) (Rothwell et al., 2013). The SMILES ID
for all the compounds and extracted metabolites were used to
predict the fragments. Similarly, the list of fragments pre-
dicted for phytochemical compounds present in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) com-
pound database (https://www.genome.jp/kegg-bin/get_
htext?br08003.keg) (Kanehisa, 2019; Kanehisa et al., 2019)
was added to the existing reference database.

Development of GUI

An interactive user interface was developed in C# with
Visual Studio 2019 Community Edition. The query and the
arguments were parsed to the command prompt, which calls a
Perl or Python script for further analysis. The custom data-
base module allows the user to predict the MS/MS fragments
of compounds by using CFM-ID models.

In addition, it also allows the user to calculate the mono-
isotopic mass of a given SMILES identifier. The SMILES
identifier of the compounds was parsed by using Pysmiles
(https://github.com/pckroon/pysmiles). PyInstaller (https://
pypi.org/project/PyInstaller) was used to convert the Python
scripts into portable executables. The identification of com-
pounds from MS and MS/MS data and the corresponding
scoring was performed by Perl script. A portable version of
Perl (v5.28.0) was provided to make the GUI dependency-
free and facilitate easy installation for users with limited
knowledge of computer applications. Also, DBD::SQLite
(https://github.com/DBD-SQLite/DBD-SQLite) Perl module
was included for executing SQLite functions.

MS search

The MS search panel allows the user to insert the query in
batch mode. m/z Values were given as queries along with the
other search parameters such as tolerance level and probable
adduct. Users are allowed to upload tab-separated text files as
query, and a custom database if required.

MS/MS search

The workflow for MS/MS search is described in Figure 1.
A pre-processed raw file (in Mascot Generic Format [MGF]
format) can be used as a query to match against a predicted
spectra database for putative compound identifications. The
precursor mass of the query was matched with the monoisotopic
mass of the compounds at user-defined error tolerances (either
in Da or parts per million [ppm]), thereby generating a list
of candidate compounds. Fragment ions of the query were

matched against the MS/MS fragments of the candidate
compounds with user-provided tolerance for fragment match,
and a score mS-score was calculated for each match.

A modified distance function has been proposed as mS-
score, which considers the difference in matched m/z values
and corresponding intensities. As the back-end database used
consists of predicted spectra, our scoring function provides
more importance to the intensity of raw/experimental m/z
values as a normalization factor b. For N number of frag-
ments matched at a defined tolerance level, Mt and Me are
fragment m/z values of theoretical and experimental spectra,
respectively. It and Ie are fragment intensity values of theo-
retical and experimental spectra, respectively. The distance
function for ith candidate can be calculated as follows:

Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+N

j¼ 1
DMj · bj · DIj

q
N2

where, DMj¼ Mt
j � Me

j

��� ��� and DIj¼ It
j � Ie

j

��� ���, and

j 2 Set of matched fragmentsf g. The normalization factor b

was calculated by 100= Ie
j

� �
. The mS-score from the distance

function was calculated as follows:

mSi¼
� ln Siþ 1ð Þ, N¼ 1

� ln Sið Þ, N > 1

�

The assigned compounds are ranked based on the de-
creasing order of mS-score for given spectrum. The candidate
with the highest mS-score is considered as the probable
compound for the corresponding spectrum.

FIG. 1. MS2Compound workflow for the identification of
compounds from MS/MS data using a custom metabolite
database. The custom reference database was generated by
using the CFM-ID MS/MS fragmentation algorithm. Raw
spectra were matched at the precursor level to generate a
preliminary list of candidate compounds. Fragment-level
spectra were matched with generated predicted fragments
for all the candidate compounds. A weighted mS-score was
assigned to each positive match, and the assignments with
the highest mS-score were considered high confidence
matches. CFM-ID, Competitive Fragmentation Modeling-
ID; MS, mass spectrometry.
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Performance of mS-score

The performance of the proposed scoring function (mS-
score) for the compound identification was compared with
existing scoring functions such as dot product, hypergeo-
metric score, and fit score. This comparison was performed
by using data from the contest of Critical Assessment of
Small Molecule Identification (CASMI; http://casmi-contest
.org/2017/index.shtml).

Raw data of challenges (in MGF format) and the corre-
sponding solutions (compounds) were downloaded from
CASMI organized during 2017. Molecular weight and
SMILES information of the solutions with PubChem CID
were extracted from the PubChem database (https://pubchem
.ncbi.nlm.nih.gov). Monoisotopic mass of the compounds
without PubChem CIDs was calculated manually in ACD/
ChemSketch (Freeware, version 2019.2.1; https://www
.acdlabs.com/resources/freeware/chemsketch) by using
SMILES identifier.

A custom reference database was created by the prediction
of MS/MS fragments of ‘‘solution compounds.’’ The ‘‘so-
lution compounds’’ are the true-positive hits for the given
challenge spectra. The fragment prediction was performed by
CFM-ID using SMILES information. The fragment predic-
tion was carried out for positive and negative modes at three
different energy levels (https://github.com/beherasan/
MS2Compound/tree/master/benchmark).

The challenges provided by CASMI were divided into two
groups based on the data acquisition mode. Compound
identification was performed separately for positive and
negative ion modes. The list of adducts used for the identi-
fication of candidate compounds is provided in Supplemen-
tary Table S2. Raw spectra of challenges were matched to
fragments of the corresponding candidate compounds. Both
precursors and fragments were matched with a tolerance le-
vel of 0.05 Da. Each match is scored with four scoring
functions; dot product, hypergeometric score, fit score, and
mS-score. Dot product and hypergeometric function were
implemented, as previously described (Yen et al., 2011); the
fit score was taken from the scoring function of My-
CompoundID, as previously described (Huan et al., 2015).
The details of all the scoring functions are provided in Sup-
plementary Methods in Supplementary Data.

Validation of the tool by re-analysis of public data

To validate the utility of the developed tool, we reanalyzed
a public dataset (MassIVE id: MSV000086784) and com-
pared the identification with previously reported results.
A global profiling of MS/MS metabolomics data of Triphala
(Subbannayya et al., 2018) was considered for re-analysis.
The raw data (.wiff) were converted to mzML format by
using MSConvert (Chambers et al., 2012). These files were
further pre-processed in MZmine2 with the parameters pro-
vided in Supplementary Table S3. Data acquired in the pos-
itive and negative modes were pre-processed separately, and
this resulted in two pre-processed raw files.

The MS2Compound was used to identify the compounds
for the pre-processed features. Phenol-Explorer and Phyto-
chemical compounds from KEGG were selected as a refer-
ence database for the MS/MS search. The features with only
MS information were used for the identification of com-
pounds at MS-level with the same resources as the reference

database. The precursor match was performed with 0.05 Da
of m/z tolerance, and 0.5 Da tolerance was used for fragment
match. Data acquired in the positive ion mode were searched
with M+H, M+Na, M + 2H, M + 2Na, M + 3H, and M + 3 Na
adducts. Similarly, the data acquired in the negative ion mode
were searched with M-H, M - H2O-H, M - 2H, and M - 3H
adducts. The final list of compounds was compared with the
compounds identified in the previously published results.

Comparison of compounds identified
from MS2Compound and MZmine2

Triphala metabolomic data acquired in the positive mode
(as described in the previous section) were used to compare
the compounds identified from the MS2Compound and
MZmine2. The raw files were pre-processed, as described in
the previous section. The features were mapped to the KEGG
database with 0.05 Da tolerance and [M+H]+ adduct through
the ‘‘Online database search’’ module in MZmine2. The
same MS/MS features were searched against ‘‘KEGG phy-
tochemical compounds’’ in the MS2Compound with 0.05 and
0.5 Da tolerances for precursor and fragment level, respec-
tively. The identified compounds were compared by mapping
the compound names that resulted from two searches.

Results

The workflow for compound identification from a given
metabolomic data is shown in Figure 1. A total of 5183 and
3366 non-redundant compounds were collected from BioCyc
(for the 10 selected species and their strains) and PlantCyc
database, respectively. Among these, 1081 compounds are
found to be shared between these 2 datasets. Among the 10
species that contributed to the dataset, M. tuberculosis and
Brucella melitensis have 353 and 180 unique compounds,
respectively, compared with all the other species in the list.

For this back-end dataset, CFM-ID in the MS2Compound
predicted fragment ions for 1785 and 2482 compounds in
both positive and negative ion modes, respectively (Supple-
mentary Table S1). For another dataset from KEGG phyto-
chemicals, the MS2Compound predicted 2489 and 2756
theoretical fragments in positive mode and negative mode,
respectively. From Phenol-Explorer, 738 and 756 com-
pounds were fragmented in positive and negative ion mode,
respectively. In total, the current version of the MS2Com-
pound back-end data has 5372 and 5849 predicted fragment
spectra in positive and negative ion mode, respectively.
A dataset from CASMI 2017 was used to check the perfor-
mance of mS-score in compound identification. In a posi-
tively acquired dataset from CASMI, a total of 121, 120, 104,
and 81 compounds were assigned correctly with rank one by
mS-score, fit-score, hypergeometric score, and dot product,
respectively.

Interestingly, none of the true-positives shared the same
score with false-positive results in the case of mS-score and
dot product. However, with the fit-score and hypergeometric
score, 2 and 13 true assignments shared the same score with
false-positive hits, respectively (Fig. 2A). We have plotted
the Receiver Operating Characteristic (ROC) curve, which is
a graphical representation with two parameters: true-positive
and false-positive hits for comparison of all the four scores
considered in our study. The ROC curve shows that the mS-
score can distinguish the true-positives from the false-
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positives with the area under the curve (AUC) of 0.8875,
which was higher than dot product and hypergeometric score,
and comparable with fit-score (Fig. 2B). However, our score
performs similar to that of fit-score as suggested by AUC
values; mS-score is able to distinguish the false-positive hits
from the true-positive hits better than the fit-score.

Contrary to the positive ion mode acquired data, the fit-
score assigned a greater number of true-positives in rank one
than the mS-score in the negative ion mode acquired data.
A total of 85 true-positives were assigned correctly by fit-
score with the highest score; however, 83 such cases resulted
from mS-score. Out of 85, in 3 cases, fit-score shared the same
score with false-positive hits (Supplementary Fig. S1A). The
fit-scores are similar in multiple matches, as this scoring is
based on the set of matched raw m/z and intensity to the ref-
erence spectra. Sharing the same score with false-positive hits
hinders the distinguishing of true-positives. However, the
mS-score was found to distinguish the false-positives from
true-positive hits. This was supported by the AUC of 0.8307
for mS-score, which was comparatively better than the other
scoring functions (Supplementary Fig. S1B).

We further manually inspected the fragments matched and
corresponding mS-score and fit-score for such matches. The
raw spectrum of challenge005 was matched to the predicted
spectrum of solutions of challenge005 and challenge006
(Fig. 3A, B). Challenge005 matched six fragments when
mapped to true-positive hits (challenge005), and it matched
with five fragments compared with a false-positive hit
(challenge006). The match score should be high for a match
with a true-positive hit; however, the fit-score gives a better
score to the false-positive hit. One of the fragment m/z values
is high in the matched spectrum list for Challenge006, which
resulted in a high fit-score value. More such examples are
shown in Figure 3C–H and Supplementary Figure S2.

In contrast, the mS-score is based on the difference be-
tween the matched m/z values and the number of matches. In

another instance, mS-score cannot distinguish the true-
positive hits from the false-positive hits, as the number of
fragments match is more in false-positives compared with the
true hits (Supplementary Fig. S3). This instance shows that
when provided with the correct predicted or experimental
spectra, the mS-score can clearly distinguish the true-positive
from similar false-positive spectra.

The validation of the developed tool was performed by re-
analysis of a publicly available dataset on Triphala, a well-
known Ayurvedic formulation. This traditional medicine
formulation is a complex of three plant species and is rich in
secondary metabolites or phytochemicals (Parveen et al.,
2018; Russell et al., 2011). The complexity of this dataset was
ideal for testing our tool. A previous study by Subbannayya
et al. (2018) identified metabolites of Triphala only at MS
level. However, predicted spectra of plant phytochemicals
could have been used as a reference to identify the metabo-
lites at MS/MS level. The MS2Compound will substantially
facilitate compound identification at MS/MS level.

In addition, one can also limit the size and nature of the
database according to the context of the study (e.g., second-
ary metabolites; lactic acid cycle; fatty acids, and so on). Re-
analysis of Triphala metabolomics dataset against a specific
database of ‘‘Phenol-Explorer’’ and ‘‘Phytochemical com-
pounds from KEGG’’ resulted in the assignment of 596
features at MS level to 358 metabolites and 333 features at
MS/MS level to 255 metabolites. The MS2Compound en-
abled the identification of 255 metabolites in Triphala at
MS/MS level, which substantially improves the quality of data.

In addition, 242 and 220 metabolites were newly identified
at MS and MS/MS level, when compared with previous
findings by Subbannayya et al. (2018), by searching against
a small and context-specific database (Supplementary
Fig. S4A). This demonstrates the use of the MS2Compound
as a complementary approach to identify additional metab-
olites with better identification, thereby improving the

A B

FIG. 2. Comparison of mS-score with other scoring functions for compound identification using CASMI 2017 challenge
datasets (http://casmi-contest.org/2017/index.shtml). Scores including DP, FS, HGS, and mS-score (mS) for compounds
identified from positive data acquisition mode have been depicted. (A) The number of true-positive hits from all the scoring
functions. The mS-score was found to assign higher scores to true-positive hits with a higher rank (Rank 1) and provided
more unique identifications. (B) ROC curve demonstrating the distinction of true-positive hits from false-positive hits in all
the scoring functions. CASMI, Critical Assessment of Small Molecule Identification; DP, dot product; FS, fit score; HGS,
hypergeometric score; ROC, Receiver Operating Characteristic.
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outcome of any metabolomic investigation. The details of
the compounds identified from Triphala metabolomics data
are summarized in Table 1. Compounds such as gallic acid
derivatives and quercetin derivatives were assigned at
MS/MS level. The MS/MS match for gallic acid and 4-

coumaroylshikimate is shown in Figure 4. Compounds such
as nortrachelogenin, fargesin, feruloyl glucose, and hesper-
etin 7-O-glucoside were not identified in the previous study.
The complete list of compounds identified is provided as
Supplementary Tables S4 and S5.

A B

C D

E F

G H

FIG. 3. Examples of a spectral match showing the ability of mS-score to identify true-positive hits compared with other
scoring functions. (A, C, E, G) Spectral match for a true-positive hit, and (B, D, F, H) spectral match for corresponding
false-positive hit. mS-score assigned a high score to true-positive match compared with the false-positive hit; however, fit-
score assigns the score inversely. In (B) some of the high m/z values are mapped to the reference database, which increases
the fit-score. m/z, mass-to-charge ratio.
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Pre-processed raw features from positively acquired data
of Triphala sample were mapped to KEGG database by using
MZmine2 software. This resulted in the assignment of 346
and 525 MS and MS/MS features to a putative compound
(Supplementary Tables S6–S8). A total of 263 and 316 non-
redundant compounds were identified from the MS and
MS/MS features, respectively. We compared the compounds
identified from MS/MS features to the compounds identified
from the MS2Compound. We have re-searched the MS/MS
features with ‘‘KEGG phytochemical compounds’’ as a ref-
erence database with [M+H]+ as the probable adduct. The
MS2Compound assigned 160 MS/MS features to 135 puta-
tive compounds. A total of 191 features at MS level were
assigned to probable compounds with an error tolerance of
0.05 Da. Comparison of all the compounds identified in
MZmine2 and the MS2Compound resulted in 434 (one fea-

ture identified to multiple compounds) common identifica-
tions (Supplementary Fig. S4B).

Finally, the MS2Compound tool also provides the unas-
signed spectra in MGF format after completion of the search.
These spectra can be further matched to public databases for
additional identification of compounds.

Discussion

User-friendly tools are much needed, as the currently
available metabolomic analysis tools do not offer adequate
provision for users to create or choose context-specific da-
tabases. Here, we introduced and evaluated the MS2Com-
pound, a metabolite identification tool that can be used to
generate a custom database of predicted spectra by using the

Table 1. Details of Mass-Spectrometry and Mass-Spectrometry/Mass-Spectrometry Features

and Corresponding Compound Assignment for the Triphala Metabolomics Dataset

MS level

Data
acquisition

mode
No. of

features

No. of
features
assigned

No. of
metabolites
identified Selected compounds

MS Positive 737 319 219 Syringic acid; gallic acid 3-O-gallate; apigenin; quercitrin
Negative 966 277 173 Quercetin 3-sulfate; cembrene; myricetin 3-O-

arabinoside; quercetin3-O-(6†-acetyl-galactoside) 7-O-
rhamnoside

Total (MS) 1703 596 358 (Non-
redundant)

MS/MS Positive 1060 252 202 Gallic acid; gallic acid ethyl ester; 3,4-O-dimethylgallic
acid; 4-coumaroylshikimate; epicatechin 7-O-
glucuronide

Negative 631 81 60 Ellagic acid; quercetin 3-O-(6†-malonyl-glucoside) 7-O-
glucoside; quercetin 3,3’-bissulfate; [6]-gingerol

Total
(MS/MS)

1691 333 255 (Non-
redundant)

MS, mass spectrometry.

A B

FIG. 4. Identification of gallic acid (A) and 4-Coumaroylshikimate (B) at the MS/MS level. The experimental fragments
are shown in the upper half, whereas the predicted fragments are shown in the lower half. The matched spectra are shown in
the dark gray and the intact structures of both molecules are shown inside a box in the top left. The structures of selected
fragment ions are depicted in the image.
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CFM-ID algorithm, and identify metabolites or compounds
from the generated database.

The MS2Compound is a fully open-source metabolomics
data search tool and it can be used by biologists even without
any prior scripting expertise. The predicted spectra can be
used as custom database for compound identification from a
given metabolomic data. A modified scoring scheme has
been proposed for MS/MS matches. The current version of
the MS2Compound comprises a back-end database with
compounds gathered from BioCyc, PlantCyc, KEGG phy-
tochemicals, and Phenol-Explorer.

Our study is based on the assumption that using a context-
relevant custom-made reference database will improve the
confidence of compound identification from MS/MS meta-
bolomics data by reducing the number of false-positives.
Recent advances in spectra prediction algorithms and their
accuracy to predict the spectra allow us to create a custom
database for a list of compounds. The raw spectra of a given
sample can be compared with these custom databases to
improve the confidence of compound identification. These
reasons motivated us to develop an easy-to-use and fully
open-source tool MS2Compound, where a user can choose
databases of interest.

Notably, the current version of the MS2Compound con-
tains the compound database for ten species and their dif-
ferent strains. To our knowledge, this is the first of its kind
search tool for metabolomic data analysis, which allows users
to identify compounds from different reference databases of
interest.

For the benefit of the biomedical scientists broadly and for
those who may not have experience in handling scripts, a
user-friendly GUI was also provided for the selection of a
user-defined reference database. The MS2Compound con-
tains a simple user interface for MS and MS/MS search,
which has been developed in C#. The back-end execution of
the program is achieved by using Perl scripts. Python module
was used in only one instance to generate the chemical for-
mula of given SMILES identifiers. The required modules and
other dependencies were compiled to make it highly portable
and easy to install.

The MS2Compound uses mS-score to score the spectra
match at MS/MS level. mS-score is a modified distance
function for matching raw spectra to a predicted spectra
database. Unlike the other existing scoring functions, the
mS-score assumes that compound identification is based
on how the m/z and intensities are matched at fragment
levels. A normalization factor b has been introduced for
every pair of matched m/z and intensity, which is in-
versely proportional to the raw intensity of the matched
fragment. A fragment with high raw intensity will be given
less normalization value compared with the fragment with
low intensity.

As the spectra in reference database consists of predicted
spectra, the normalization factor b is dependent only on the
intensity of the raw/experimental spectra. This makes the
score an asymmetric function; however, it gives better re-
sults in such matches during compound identification. The
score also assumes that the provided intensities are relative
intensities (ranging from >0 to 100), therefore the normal-
ization factor b is defined with a constant term 100 in the
numerator. mS-score also considers the number of matched
fragments at a given tolerance level. An increased number

of matched fragments increases the confidence in compound
identification. The current version of MS2Compound is
restricted to the compound identification step, so it lacks any
pre-processing steps for the raw data. Therefore, it uses a
pre-processed (pre-processing such as removing noises
from the spectra and other necessary steps) raw file as an
input for MS/MS search.

In addition, other software such as MZmine2 can be used
for pre-processing of the raw spectra and then export the
MS/MS features as MGF format. The performance of the mS-
score was compared with the three other scoring functions
considering two parameters; the number of correctly assigned
compounds with the best score (i.e., with rank 1) and the
number of false-positive hits sharing the same score with the
true-positive hits. mS-score was found to assign a greater
number of true-positive hits compared with other scoring
functions. Our score considers the difference in m/z and
corresponding intensity for each match; however, other
scores were based on the matched list of m/z and intensity,
allowing the mS-score to distinguish the best match from
other matches.

The functioning of MS2Compound was demonstrated
with a re-analysis of a complex metabolomics dataset from a
traditional medicine formulation-Triphala. It is one of the
well-known ayurvedic formulations in traditional practices
with anticancer, antimicrobial, and immunomodulatory ac-
tivities (Belapurkar et al., 2014; Biradar et al., 2008; Vadde
et al., 2015). This formulation comprised dried extracts from
three plants; Phyllanthus emblica, Terminalia bellirica, and
Terminalia chebula, and they are rich in phytochemicals
such as phenols, flavonoids, tannins, saponins, and others.
The study of metabolites at the MS/MS level pose chal-
lenges due to the lack of MS/MS information for plant
secondary metabolites. Prediction of the MS/MS spectra for
these metabolites serves the purpose of the reference da-
tabase in compound identification.

Metabolite assignment of Triphala metabolomics data,
searched against phytochemicals and phenols database,
resulting in 558 metabolite matches. Previous data were
generated by searching against a comprehensive KEGG
database, because there was no opportunity to select
context-specific datasets in MZmine2. However, using the
MS2Compound, we could select a context-specific dataset
of MS/MS spectra from KEGG phytochemicals. Approxi-
mately 37% and 20% of features were assigned to putative
compounds in both MS and MS/MS-level, respectively.
We found MS/MS evidence for the signature metabolites
present in Triphala. Derivatives of gallic acid, quercetin,
myricetin, and epicatechin were also assigned at MS/MS
level this time. We also found other pharmacologically
active compounds, including gibberellin A15, feruloyl
glucose, and hesperetin 7-O-glucoside, with a good score at
MS/MS level.

We found metabolites such as nortrachelogenin and
fargesin with known medicinal properties, which have not
been captured in the previous article. Nortrachelogenin
was known as one of the pharmacologically active com-
pounds present in medicinal plants (Kato et al., 1979;
Kaunda and Zhang, 2017). Fargesin was known to have
anti-inflammatory properties (Pham et al., 2017). This anal-
ysis of Triphala dataset using the MS2Compound suggests
that this tool can be effectively used to mine several such
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publicly available datasets (such as data acquired by Banerjee
et al., 2020 and Karthikkeyan et al., 2020) to successfully
identify significant and context-relevant metabolites pertain-
ing to the model being studied.

MS/MS matches from MS2Compound and MZmine2
show 62.8% similar identification using the positively ac-
quired Triphala raw data. The MZmine2 identifications were
performed only at MS level; however, the MS2Compound
provided the evidence at MS/MS level. This improves the
confidence of compound identification. However, we missed
some of the identification as we have used only phyto-
chemicals of KEGG database and at least three fragment
matches for MS/MS searches.

Alongside other tools, Global Natural Products Social Mo-
lecular Networking (GNPS) (Wang et al., 2016) and XCMS are
among the widely used software for compound identification.
GNPS and XCMS provide multiple features with respect to the
compound identification from metabolomics data. The GNPS
allows library search against known spectra for standard
compounds compiled from various sources (https://gnps.ucsd
.edu/ProteoSAFe/libraries.jsp).

Similarly XCMS uses METLIN as the back-end library
for compound identification. However, these databases are
comprehensive; they do not allow context-specific compound
identification for a given experiment, which might lead to a
high number of false-positive identifications. Instead, the
current tool provide the luxury of selecting own databases or
creating a custom database for a particular study, thereby
finding the compounds that are most likely to present in the
given sample.

The MS2Compund offers multiple advantages over other
existing tools by:

(i) allowing the use of databases of choice;
(ii) generation of MS/MS spectra of compounds powered

with CFM-ID algorithm;
(iii) search at MS/MS level (for experiments with

MS/MS information); and
(iv) powered with a better scoring function mS-score.

The MS2Compound also provides the unassigned spectra
as MGF file output, which will make it easy to integrate it in
further analysis by incorporating searches against additional
databases and algorithms of choice for deeper mining of
metabolomic datasets. We believe that the MS2Compound
will become an effective and complementary tool and will
transform the metabolomic data analysis pipelines in the
times to come. The current version of the MS2Compound
does not allow for data pre-processing, which will be con-
sidered for next updates.

Conclusions

The MS2Compound tool developed in the study is poised
to improve the quality of biomedical research by improving
the metabolomic data analysis pipeline. It will easily com-
plement the current search algorithms, which often search
metabolites only at MS level. Implementation of a novel
mS-score minimizes false-positives in metabolite-spectral
matching. By allowing a user-specified custom database, the
MS2Compound can transform the way the metabolomics
data are handled currently. Powered with a robust prediction
algorithm of potential MS/MS spectra for a database of me-

tabolites, the MS2Compound will accelerate the generation
of MS/MS spectral library for metabolites in the near future.
It will facilitate the identification of new metabolites, which
have not been identified at MS/MS level so far. By provid-
ing unassigned spectra as MGF files, which then can be
easily plugged to subsequent data analysis pipelines, the
MS2Compound will serve as a complementary tool to the
existing tools of metabolomics.

Data Availability

Raw files for Triphala metabolomics study are available at
MassIVE (MassIVE id: MSV000086784).
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