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Abstract
Molecular Property Diagnostic Suite Compound Library (MPDS-CL) is an open-source Galaxy-based cheminformatics web 
portal which presents a structure-based classification of the molecules. A structure-based classification of nearly 150 million 
unique compounds, obtained from 42 publicly available databases and curated for redundancy removal through 97 hierarchi-
cally well-defined atom composition-based portions, has been done. These are further subjected to 56-bit fingerprint-based 
classification algorithm which led to the formation of 56 structurally well-defined classes. The classes thus obtained were 
further divided into clusters based on their molecular weight. Thus, the entire set of molecules was put into 56 different 
classes and 625 clusters. This led to the assignment of a unique ID, named as MPDS-AadharID, for each of these 149,169,443 
molecules. MPDS-AadharID is akin to the unique number given to citizens in India (similar to SSN in the US and NINO 
in the UK). The unique features of MPDS-CL are (a) several search options, such as exact structure search, substructure 
search, property-based search, fingerprint-based search, using SMILES, InChIKey and key-in; (b) automatic generation of 
information for the processing for MPDS and other galaxy tools; (c) providing the class and cluster of a molecule which 
makes it easier and fast to search for similar molecules and (d) information related to the presence of the molecules in mul-
tiple databases. The MPDS-CL can be accessed at https:// mpds. neist. res. in: 8086/.
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Introduction

Chemical space is quite vast and finding a molecule with the 
desired property is arguably the most formidable challenge. 
In general, structurally similar compounds are expected to 
have similar properties. In drug/molecular design, the struc-
tural similarity is of paramount importance and any effort 
which structurally and systematically divides the chemi-
cal space will be of outstanding interest [1–5]. Develop-
ing new chemical libraries is of fundamental importance in 
the current scenario to systematize the process of covering 
huge chemical space and tapping its potential in multifari-
ous applications in science and technology [6–10]. Such an 
effort will help to qualitatively and quantitatively estimate 
and assess the structural similarity and chemical diversity 
which will be useful in mining the chemical/biological 
property space [11–13]. The ability to synthesize molecules 
has remarkably enhanced due to the pioneering efforts by 
experimental chemists, which resulted in the synthesis of a 
huge number of molecules of diverse structural scaffolds and 
features [1]. However, in practice only a very small fraction 
of such synthesized molecules is of utility, which highlights 
the limitations of exploratory approaches and emphasizes 
the need to adopt rational design. Therefore, in recent years, 
the focus has shifted from “how to synthesize” to “what to 
synthesize”.

While there are extensive studies on chemical space, most 
of them are devoted to explore the property space and very 
few of them focus on structure-based classification. One of 
the pioneering attempts was made by Waldmann’s group in 
attempting to a Structural Classification of Natural Products 
(SCONP), which is thus limited to only natural products 
[4, 14]. The focus was on heterocycles and the occurrence 
of those compounds in natural products. Other approaches 
are based on the theoretical generation of molecules, and 
explore the size of the chemical space [1–5, 15–18]. Frag-
ment-based approaches also have played a significant role, 
and several methods were developed especially in the area of 
medicinal chemistry-directed drug discovery [19–21].

Compound libraries are developed with the objective of 
enumeration, analysis, and extrapolation of the chemical 
space for various applications in chemistry, biology, and 
allied sciences. The curation of the chemical data are also 
concerned with the cleaning of molecules to remove any 
salts, and mixtures, normalization of various chemotypes, 
de-duplication of redundant molecules, etc. Besides, the 
manual and automated curation applied to the big chemi-
cal data, the lack of rigorous standardization methods in 
the chemical reaction, transformations are still one of the 

problems faced by chemists and the role of informatics and 
Artificial Intelligence (AI) is valuable in removing the bar-
riers and deriving novel insights from the vast molecular 
space [22–28].

Finding druglike and non-druglike molecules through 
various means of theory and experimentation is the prime 
motto of drug discovery projects. While there are a large 
number of databases depicting the chemical structures, to 
our knowledge, attempts towards the structural classifica-
tion of compounds are scarce. The recent progress made 
in the synthesis and the growing need for novel chemical 
entities together pushes for an urgent need to scale up the 
existing methods and design new methods in developing 
elegant technologies for making the best use of deciphering 
the structure–property relationships from the chemical space 
[8–12]. The ultimate goal in all these attempts is to find the 
molecule(s) with the most desirable properties, e.g., drugs, 
catalysts, agrochemicals, etc. [13, 14].

The Galaxy-based MPDS was an initiative to strengthen 
the open-source computational drug discovery, provid-
ing access to most of the available open-source, custom 
designed indigenously developed scripts, programs and soft-
ware packages [29–34]. Galaxy platform supports both the 
web and the standalone version which can be implemented 
on a Linux server. The Toolshed of Galaxy, which is periodi-
cally updated, is populated with a wide range of programs 
that can be directly imported and installed on users’ Galaxy 
portals [30, 31, 35]. It also offers the advantage of adding 
several user-developed programs which are incorporated into 
the Galaxy directory and are programmatically called to the 
front interface through an XML file. Several virtual machine 
images of Galaxy instances [30] are also made available 
online so that they can be used for various hands-on and 
other training sessions for data-intensive biology and chem-
istry applications. MPDS-CL in specific and other chemical 
libraries in general; its development, scalability, and automa-
tion techniques will be essential in deriving novel insights 
for drug discovery by comprehensively assessing the chemi-
cal space and finding various ways of prioritizing the lead 
molecules for drug discovery projects [36–40]. Ensuring the 
unique molecules along with creating a structurally well-
defined chemical data library was taken as the paramount 
significance in creating the MPDS-CL.

Genesis of Galaxy‑based MPDS

MPDS is an indigenous initiative that is developed to 
strengthen computational drug discovery and is an attempt 
to address the pressing issues of drug discovery. As it is 
developed on the Galaxy platform, features like cloud-based 
accessibility, reproducibility, and various data-driven meth-
ods are also made available. The MPDS suites of disease-
specific web portals include proprietary libraries, machine 
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learning models, and other relevant open-source tools and 
resources essential for drug discovery solutions. The com-
pound library is the most important component of the data 
library module of MPDS, which was initially integrated 
into the  MPDSTB web portal. At that time, using the six 
most popular and abundant chemical databases, around 110 
million unique non-redundant set of compounds, with 31 
classes, was reported. Over a period of time, various disease-
specific MPDS portals including  MPDSTB [15],  MPDSDM 
[34],  MPDSCOVID-19 [41] were developed, and other portals 
like  MPDSNAFLD and  MPDSHIV are under development. The 
modules in MPDS are categorized into (i) data library (that 
consists of information on genes and targets specific to a 
disease or disorder, a molecular repository, druglike frag-
ments, literature, etc.,) (ii) data processing (computation of 
molecular descriptors/fingerprints, file format converter) (iii) 
data analysis (QSAR, docking, drug-likeness filter, and visu-
alization tool) and (iv) Advanced modules (which include 
various predictive modules for disease–disease interaction, 
big data analysis, and machine learning tools). MPDS is 
also equipped with a workflow management system that 
enables the users to easily integrate multiple tools from the 
available modules and customize the existing workflows as 
per the requirements [32–34, 41]. The utility and scope of 
open-source packages are well-documented in the literature 
[42, 43].

The current MPDS-CL was developed into a new full-
fledged web portal, and not as one of the modules of MPDS 
and in that respect it is vastly different from the earlier mod-
ule, which was presented as one of the modules of  MPDSTB 
about 6 years ago. The MPDS-CL is an independent web 

portal, which is well-positioned to integrate with Galaxy and 
MPDS web portals. The classification of close to 150 million 
molecules and redundancy removal techniques employed 
are different and much more efficient, compared to those 
employed in  MPDSTB six years ago (Fig. 1). This module 
enables comprehensive structural analysis, assigns a unique 
MPDS-AadharID to each molecule, offers descriptor analy-
sis tools, fragment library, and screening tools.

Materials and methods

Forty two public domain chemical databases, have been con-
sidered in making the current compound library (Table 1), 
while the erstwhile compound library module of  MPDSTB 
had six databases (PubChem, KEGG, ZINC, DrugBank, 
ASINEX, and NCI). However, two types of databases were 
excluded: (a) large databases of hypothetical molecules and 
(b) some commercial/inaccessible databases (Table S1).

The databases considered here may be categorized as 
general and specialized databases based on the type of 
molecules they contain. The bioactivity libraries consti-
tute repositories like PubChem and ChEMBL. While other 
categories of databases include drugs and molecules of 
biological importance such as Therapeutic Target Data-
base, DrugCentral, SuperDrug2, DrugBank, PharmGKB, 
GRAC, SMPDB, KEGG compound database, HMDB, 
and ChEMBL-DNDi. Other libraries include molecules 
extracted from patent and general literature (SureChEMBL, 
BindingDB), GPCR ligand database, GPCR decoy database, 
a database of lipid-like molecules (LipidBank), a database of 

Fig. 1  Home page of MPDS Compound Library (MPDS-CL) accessible at https:// mpds. neist. res. in: 8086/. The left panel consists of various 
search options and cheminformatics tools incorporated in the portal. The right-side panel displays the uploaded data and the results

https://mpds.neist.res.in:8086/
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Table 1  Detailed information of the databases used to develop the MPDS-CL with their statistics

a A specific subsets (only the “Standard + In-Stock” subset) has been included in MPDS-CL
b Not included in the MPDS-CL

References Database Dec-16 Dec-17 May-18 May-19 Jun-20 Jul-22 Dec-22 Jul-23
Compounds

[61] PubChem 92,293,546 94,136,411 96,300,363 97,176,562 102,710,207 111,665,090 112,428,952 114,022,856
[62] Mcule – – 35,742,734 42,267,878 45,472,755 85,383,043 85,383,043
[63] eMolecules (free 

version)
– – 17,559,951 22,327,838 26,436,139 26,436,139 26,436,139 26,436,139

[64] SureChEMBL 16,599,522 18,971,423 20,255,239 20,926,618 21,574,903 21,641,384  > 21,641,384  > 21,641,384
[65] CoCoCo 6,981,556 6,981,556 6,981,556 6,981,556 6,981,556 6,981,556 6,981,556 6,981,556
[66] ChEMBL 1,686,695 1,686,695 1,828,820 1,879,206 1,950,765 2,331,200 2,331,200 3,379,776
[67] ChemDiv – – 1,600,000 1,600,000 1,600,000 1,600,000 1,600,000 1,600,000
[68] SPECS – – 1,024,181 1,361,884 1,361,884 1,361,884 1,361,884 1,361,884
[69] ChEMBL-DNDi 1,305,058 1,305,058 1,305,058 1,305,058 1,305,058 1,305,058 1,305,058 1,305,058
[70] Ligand-Info 206,334 206,334 1,159,274 1,159,274 1,159,274 1,159,274 1,159,274 1,159,274
[71] GPCR Decoy DB 980,655 980,655 980,655 980,655 980,655 980,655 980,655 980,655
[72] BindingDB – – 650,012 652,068 820,433 1,098,225 1,098,225 1,598,620
[73] TimTec – – 628,462 628,462 628,462 628,462 628,462 628,462
[74] ASINEX 596,300 603,276 610,548 610,548 610,548 610,548 610,548 610,548
[75] InterBioScreen – – 564,386 569,704 569,704 569,704 569,704 569,704
[76] COCONUT – – – – – 407,270 407,270 407,270
[77] Universal Natural 

Products Data-
base

298, 716 298,716 298,716 298,716 298,716 298,716 298,716 298,716

[78] NCI 284,176 284,176 284,176 284,176 284,176 284,176 284,176 284,176
[79] Crystallography 

Open DB
– – 162,172 162,172 189,067 491,597 491,597 491,597

[80] HMDB 41,824 114,100 114,100 114,100 114,100 251,936 251,936 251,936
[81] Probes and Drug 

portal
– – – – – – 98,657 158,238

[82] Openmolecules – – 90,155 90,155 90,155 90,155 90,155 90,155
[83] LipidBank – – 84,112 84,112 84,112 84,112 84,112 84,112
[84] ChemBank – – 75,964 75,964 75,964 75,964 75,964 75,964
[85] ChemMine – – 64,000 64,000 64,000 64,000 64,000 64,000
[86] ChEBI 50,504 53,495 54,724 55,453 55,453 60,176 60,176 103,694
[87] SMP database – – 4341 49,817 49,817 49,817 49,817 99,607
[88] GPCR Ligand 25,145 25,145 25,145 25,145 25,145 25,145 25,145 25,145
[89] KEGG 7913 18,111 18,228 18,228 18,228 18,228 18,228 18,228
[90] MDPI 8576 8576 15,348 15,348 15,348 22,401 22,401 22,401
[46] OSADHI – – – – – – 22,314 22,314
[91] TOSLab 17,410 17,410 17,410 17,410 17,410 17,410 17,410 17,410
[92] DrugBank 7002 10,507 11,146 11,924 11,924 14,665 14,665 15,483
[93] MyriaScreen2 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
[94] GRAC – – 6881 9405 9405 9405 9405 9405
[45] NEI-MPDB – – – – – – 9225 9225
[95] PHARMGKB – – 7030 7030 7030 7030 7030 7030
[96] ChemDB – – 5937 5937 5937 5937 5937 5937
[97] DrugCentral – – – 3981 4052 4099 4099 8376
[98] SuperDrug2 – – 3982 3993 3993 3993 3993 3993
[99] TTD – – 2326 2936 2936 2936 2936 26,316
[100] ZINCa – – 1 billion 1 billion  > 2 billion  > 2 billion  > 2 billion  > 2 billion
[2] SAVIb – – – – 1.75 billion 1.75 billion 1.75 billion 1.75 billion
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the crystal structure of organic and inorganic, metal-organics 
and other minerals (Crystallography-open database), Natu-
ral product database (InterBioScreen, UNPD), and database 
with lead-like molecule and useful fragments (ASINEX and 
ChemDiv) (Table 1). The methodology described in the 
further sections essentially deals with various open-source 
cheminformatics packages and the Python programs devel-
oped for chemical data analysis.

Retrieval of molecules

The molecules used for developing the compound library 
were retrieved from various public domain chemical data-
bases in multiple file formats like SMILES, SDF, and MOL. 
The molecules that were not in the SMILES format, were 
converted to the canonical SMILES to maintain a unique 
representation for all the molecules in the database. The 
canonicalization algorithm as implemented in the Open-
Babel3 [44] was used to convert all the SMILES formats 
into the canonical format. Few of these databases are 
updated over a specific period while others like PubChem, 
SureChEMBL are populated with new molecules every 
other day. In the current study, we have retrieved the mol-
ecules till July 2023 and all analysis was performed using 
this dataset. The chemical databases offer a wide range of 
information about the molecules including their structural, 
physicochemical, reaction profiles, analytical data, etc. The 
molecules that were obtained from public domain chemical 
databases are mentioned in Table 1 in which each database 
and its statistics of update is indicated. The work summa-
rized here mainly consists of the structural information in 
the form of SMILES, which were parsed into the SMARTS 
pattern for subsequent processing and analysis of the data-
set. Linux-based expressions, such as AWK, sed, along with 
a set of python packages were employed to obtain unique, 
non-redundant 97 atom-based portions (Table S2). The 
process of retrieving data from each database differs and 
retrieval depends on the type and number of new molecules 
included in the database. In the case of PubChem, molecules 
included within a specific duration were retrieved using the 
file transfer protocol (FTP) method whereas for ChEMBL, 
a web resource client that is a python-based library, as well 
as a bulk download option, was used. In the case of Sure-
ChEMBL, the quarterly updated molecules were retrieved 
in bulk. ZINC database has the option to retrieve specific 
subsets, “Tranch” according to the molecule’s type, its reac-
tivity, purchasability, etc., While there are a large number of 
molecules in ZINC, we considered only the “Standard + In-
Stock” subset. From all the remaining databases, the mol-
ecules were retrieved as ‘bulk download (Fig. 2). Some 
region-specific natural products and phytochemicals-based 
databases are also available and some of them are developed 
in our group [45, 46], and if new molecules are found they 

will be added to MPDS-CL periodically, during the half-
yearly updates.

Schema for redundancy removal and structural 
classification

Each database was classified into 97 hierarchically well-
defined atom-based portions (Fig. 3). As the classification 
is hierarchical, those portions which were not considered for 
further classification were labelled as ‘terminal portions’, 
and the rest as ‘open portions’. The classification has been 
carried out in five distinct classification steps, which are 
called as layers (Fig. 3). The first layer of classification was 
based on molecular weight (MW) and atom composition. 
Thus, Portions 1–3 were assigned as terminal portions for 
the first classification layer, and all remaining portions were 
further classified in the second layer. The second classifi-
cation layer was based on molecular topology (acyclic or 
cyclic), and all those molecules that were categorized as 
acyclic were considered as terminal portions, while cyclic 
molecules were further classified as alicyclic and aromatic 
molecules in the third layer.

In the third classification layer, both alicyclic and aro-
matic portions that contain Te, Se, Ge, As, Sb (Portions 
12–13), B and Si (Portions 14–19), Phosphorus (Portions 
20–21), and hydrocarbons (Portions 22–25), were assigned 
as terminal portions, and the remaining portions were con-
sidered for further classification. The fourth classification 
layer is based on the count of heteroatoms, which gener-
ate portions that were specifically categorized as sulphur, 
oxygen, and nitrogen-containing. These were subjected to 
further classification as no terminal portions were identified 
in this layer. The open portions obtained from the fourth 
layer were used for classification in the fifth layer, and it 
was based on the position of the heteroatom in a molecule 
that can be inside or outside the ring. For example, if a mol-
ecule consists of sulphur inside a ring, then it was classified 
into a separate portion, and if the molecule doesn’t have any 
sulphur atom inside the ring, it was classified into a differ-
ent portion. Likewise, the oxygen and nitrogen-containing 
molecules were classified into their respective portions. 
In this way, all the open portions of the fourth layer were 
completely classified as terminal portions in the fifth layer, 
and hence a total of 97 different atom-based portions were 
obtained.

Among the file formats, InChIKey [47] appears to be the 
gold standard for unambiguously identifying the molecule, 
it has been used for redundancy removal in the compound 
library. The standard InChIKey was computed using Open-
Babel3 [44] for all the molecules. InChIKey is a string of 27 
characters built on the SHA-256 encoding algorithm applied 
on the InChI and the abstract notation consisting of hashed 
information for molecular skeleton and isomerism. It was 
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primarily developed for indexing purpose but is very useful 
for text-based mining and searching in chemical databases, 
as well as for removing redundancy.

All programs used to classify the molecular space were 
coded in Python3 and SMARTS patterns were utilized 
extensively [48]. The validation of SMARTS patterns 
was done rigorously to avoid any misclassification of 
molecules. For atoms-based classification, the SMARTS 
pattern consisting of the acronym of individual atoms or 
corresponding atomic number was used, while the next 
level of classifying the cyclic and acyclic molecules was 
done by identifying the atoms in rings and outside the 
rings. The structural classification of molecules was 

primarily carried out on all the cyclic portions to iden-
tify the structural diversity of molecules. The algorithm 
used to classify the molecules first parses the SMILES 
string and converts it to the SMARTS pattern by calling 
the ‘pybel function’of the OpenBabel package. This pat-
tern is then searched in the parsed SMILES, and based 
on the presence/absence or position of specific atoms, 
molecules are classified (Fig. 4). The programs developed 
for structural classification have extensively made use of 
the SMARTS pattern parsed through both OpenBabel 
and RDkit modules [49], and individual SMARTS-based 
expression was created and validated for each class. Each 
of these SMARTS patterns act as substructure queries for 

Fig. 2  An overview of the 
development of the MPDS-CL, 
from the molecules downloaded 
from 42 databases. MPDS-CL 
had 147,571,744 molecules 
in December 2022. While the 
initial set of non-redundant 
molecules were obtained by 
employing the scripts in por-
tions, the half-yearly updates 
use an entirely different 
approach to add molecules 
directly to the classes and 
clusters. Thus, the updates as 
on July 2023 is 149,169,443 
number of unique molecules
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identifying specific structural feature in a molecule from 
the large chemical space, and thus aiding in classifying 
the molecules with matched features. Particular syntax 
such as presence of rings, ‘n-’ring-membered type, ring 
systems (fused/non-fused/connected) and other complex 

structural features, all were used to screen and efficiently 
identify molecules from large space. Considering the 
responsibility of producing and reusing scholarly data, 
we have strictly complied with the FAIR Data Principles 
which are well accepted, concise and measurable [50].

Fig. 3  Diagrammatic representation of the scheme employed to obtain the atom-based division of molecules into 97 portions

Fig. 4  An illustration depicting the step-by-step protocol employed for developing the MPDS-CL
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Results and discussion

After obtaining an unambiguous set of 149,169,443 mol-
ecules, structural classification of them into 56 classes 
was achieved by employing a series of scripts and tools, 
as described in the foregoing sections (Table 2). The 56 
classes presented in the Table 2, are carefully carved to 
group and enumerate molecules with such features into 
distinguishable groups.

One needs to consider that a molecule may belong to 
multiple classes, but the sole idea of structural classifica-
tion is to identify or designate a molecule on the basis of 
the core moiety or a principal structural feature respon-
sible for rendering a specific activity, that again depends 
on its structure–property-based relationship. In literature 
various studies were reported [1–10] which focus on vari-
ous hierarchical levels of structural classification such as 
topological, skeleton, atomic connectivity, formulae, and 
biological role. However, the current classification scheme 
is based on identifying and profiling molecules based on 
a chemically well-defined structural motif, termed as a 
‘class’.

In this manuscript, the entire molecular structure was 
considered for enumerating various types of molecules 
existing in this portion of the chemical space. Two cyclic 
molecules combine in various ways, (a) edge sharing, 
which is called fused, (b) vertex sharing, which is spiro, 
(c) connected by a bond, which may be called connected, 
or (d) connected by a linker, which are called discon-
nected (Fig. 5). As seen in Table 2, Class 21 (Bicyclic 
connected rings) is found to have the largest population 
of molecules, i.e., 30.11 million, which clearly indicates 
that this class consists of the large number of molecules 
that have ring connected via a non-ring bond and absence 
of fused ring systems. The presence of connected rings 
systems offers stability and rigidity to the molecules in 
addition which may be responsible for their higher syn-
thetic accessibility. Classes 10–12, 16–17, and 27 were 
designed to group specific molecules where free forms of 
Pyrrole, Furan, Thiophene, Benzene, and Pyridine can be 
identified. This is also done with an interest in identify-
ing molecules with medicinally relevant rings exhibiting 
their unique functional role as valuable building block in 
drug design, optimizing certain therapeutic effects with 
respect to a drug, etc. Classes 22–37 are different forms of 
bicyclic fused ring systems, which are intended to group 
molecules with varied bicyclic scaffolds in terms of ring 
size, and combination of aliphatic and aromatic patterns. 
These classes combinedly constitute 25.85 million mole-
cules, showing their immense contribution to the therapeu-
tic chemical space, with a large population representing 
the terpenes, alkaloids, and other molecules belonging to 

Table 2  List of 56 classes and population of molecules belonging to 
each class

Class Description Population

1 Acyclic (saturated/unsaturated) 3,455,531
2 Pure inorganic molecules 12,630
3 Monocyclic 3 membered saturated ring 333,466
4 Monocyclic 3 membered unsaturated ring 5711
5 Monocyclic 4 membered saturated ring 249,354
6 Monocyclic 4 membered unsaturated ring 9553
7 Monocyclic 5 membered saturated ring 1,224,146
8 Monocyclic 5 membered unsaturated ring 153,678
9 Monocyclic 5 membered aromatic ring 2708
10 Pyrrole (free) 171,154
11 Furan (free) 288,279
12 Thiophene (free) 604,404
13 Monocyclic 6 membered saturated ring 2,452,169
14 Monocyclic 6 membered unsaturated ring 405,431
15 Monocyclic 6 membered aromatic ring 77,290
16 Benzene (free) 26,496,311
17 Pyridine (free) 5,221,873
18 Monocyclic ≥ 7 membered saturated ring 620,637
19 Monocyclic ≥ 7 membered unsaturated ring 118,401
20 Multiple (≥ 2) main group elements in a ring 16,304,254
21 Bicyclic connected rings 30,111,865
22 Bicyclic fused 3 + ’n’ membered 211,041
23 Bicyclic fused 4 + ’n’ membered 365,491
24 Bicyclic fused 5 + 5 membered [A + A] 216,117
25 Bicyclic fused 5 + 5 membered [A + NA] 168,626
26 Bicyclic fused 5 + 6 membered [A + A] 5,300,636
27 Indole (Free) 1,631,787
28 Bicyclic fused 5 + 6 membered [A + NA] 1,079,827
29 Bicyclic fused 5 + 6 membered [NA + A] 3,620,404
30 Bicyclic fused 5 + (5/6/ ≥ 7) membered 

[NA + NA]
1,962,058

31 Bicyclic fused 5 +  ≥ 7 membered [A + NA] 167,017
32 Bicyclic fused 6 + 6 membered [A + A] 4,729,630
33 Bicyclic fused 6 + 6 membered [A + NA] 3,658,454
34 Bicyclic fused 6 + 6 membered [NA + NA] 885,091
35 Bicyclic fused 6 +  ≥ 7 membered 709,655
36 Bicyclic fused ≥ 7 +  ≥ 7 membered 16,923
37 Bicyclic spiro 1,133,303
38 Tricyclic connected (1 ring aromatic) 715,276
39 Tricyclic connected (2 rings aromatic) 3,448,581
40 Tricyclic connected (3 rings aromatic) 1,115,644
41 Tricyclic connected (no aromatic rings) 52,924
42 Tricyclic fused (1 ring aromatic) 809,585
43 Tricyclic fused (2 rings aromatic) 1,257,912
44 Tricyclic fused (3 rings aromatic) 609,406
45 Tricyclic fused (no aromatic rings) 579,092
46 Tricyclic fused-connected [Any combinations] 11,066,401
47 Tetracyclic connected [Any combinations] 873,036
48 Tetracyclic fused [Any combinations] 1,167,417
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pharmaceutically important natural products. The tricy-
clic molecules are grouped from classes 38–46, each class 
depicting the molecules with notable topological varia-
tions in association with different ring systems. Tetracyclic 
and polycyclic classes are arranged from 47 to 51, with a 
special class designated for large complexed fused rings 
up to tetracyclic group in class 50, while classes 52–54 are 
exclusively designed for molecules constituting transition 
metals, and classes 55–56 are designated for large MW 
(≥ 750.00 Da) molecules.

Table 3 illustrates the various possible combinations as 
explained between the two cyclic moieties, by taking a sim-
ple ring system. Molecules which contain both five and six 
membered rings simultaneously represent the largest chunk, 
66.16 million, which represents more than 44% of all chemi-
cal space. Therefore, four out of 10 molecules have both 5 
and 6 membered rings in them. The next best combination 
is three and six membered rings with a total of 2.59 mil-
lion molecules. Among the classes, three or more transition 
metal containing molecules class 54, with a population of 
only 303 represent the least abundant class in the chemical 
space. The least population (1445) of molecules is obtained 
from those constituting both eight and ≥ 9 membered ring 
systems.

Property space for cyclic and acyclic molecules

While the molecules are classified as cyclic and acyclic 
systems, the general property distribution in the chemical 
space between these varieties was examined and the results 
are depicted in Fig. 6. The molecular descriptors like MW, 
hydrogen bond donor/acceptor, number of rotatable bonds, 
polar surface area, number of heavy atoms, and logP were 
computed for all the acyclic and cyclic non-redundant mol-
ecules. The distribution of descriptors is used to understand 
the property space of the molecules (Fig. 6), and thereby aid 
in estimating the druglikeness of the given chemical space. 

Table 2  (continued)

Class Description Population

49 Tetracyclic fused + connected [Any combina-
tions]

4,559,512

50 Complex ring systems up to tetracyclic 1,013,766
51 Pentacyclic & above 3,962,984
52 1 transition metal in a molecule 56,796
53 2 transition metals in a molecule 1871
54  ≥ 3 transition metals in a molecule 303
55 Mol.wt. = 750.00–1200.99 Da 2,973,899
56 Mol.wt. ≥ 1201.00 Da 730,133
Total 149,169,443

A aromatic, NA non aromatic

Fig. 5  A schematic representa-
tion of a unattached; b fused; 
c spiro; d connected; and e 
disjointed ring systems. The 
first four scaffolds represent 
unique features and therefore 
can correspond to a unique 
class. However, in case of 
e when a linker is involved, 
such an arrangement leads to a 
combination of more than one 
feature. This leads to the pres-
ence of more than one unique 
feature (correspond to a specific 
class) in a given molecule

Table 3  Pairwise distribution of 
‘n’ membered rings as observed 
in MPDS-CL

3 4 5 6 7 8

4 30,581
5 641,651 404,334
6 2,597,353 1,668,516 66,169,215
7 22,867 15,344 312,595 1,699,025
8 4931 2598 29,430 165,032 2013
 ≥ 9 8460 2870 65,248 391,692 1587 1445
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Concerning MW, the highest number of molecules in acy-
clic space covers a range of 100.00–500.00 Da with a peak 
at 250.00 Da, while in the case of cyclic molecules, a pro-
gressive increase in the population of molecules is observed 
in the range of 150.00–750.00 Da, with the peak popula-
tion between 300.00 and 350.00 Da. Figure 6 illustrates the 
distribution observed in, both cyclic and acyclic molecules 
with respect to their properties: (a) MW, (b) molar refractiv-
ity, (c) hydrogen bond donor, (d) hydrogen bond acceptor, 
(e) no. of heavy atoms, (f) rotatable bonds, (g) logP, and 
(h) topological polar surface area. The prototypical eight 
parameters considered for comparing and contrasting the 
chemical space distribution in cyclic and acyclic molecules 
reveal the following trends. Similar trends were observed 
in the distribution of hydrogen bond donor, hydrogen bond 

acceptor, logP and topological polar surface area for acyclic 
and cyclic molecules. While it has been observed that there 
is a slight broadening for cyclic molecules in the case of the 
distribution of MW, molar refractivity and the no. of heavy 
atoms. In contrast, in the case of rotatable bonds the distri-
bution is sharper in cyclic molecules compared to acyclic. 
Thus, as expected the trends reveal higher diversity in the 
case of cyclic molecules and less flexibility compared to 
their acyclic counterparts.

Cheminformatics tools

Galaxy is a publicly available web server that provides an 
open-source web-based platform for a wide range of bio-
informatics, cheminformatics, genomics, proteomics and 

Fig. 6  Figure displaying the population-based distribution of selected 
molecular properties (for A acyclic and B cyclic molecules): (a) MW, 
(b) hydrogen bond donor, (c) hydrogen bond acceptor, (d) molar 

refractivity, (e) number of heavy atoms, (f) rotatable bonds, (g) logP 
and (h) topological polar surface area
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other analysis [29, 30, 51, 52]. Another major strength 
of Galaxy is the workflow system, which allows a very 
effective and automated execution of large projects 
involving multiple steps. Further, the ease with which 
one can write scripts, programs and develop software in 
any programming language to existing webservers based 
on Galaxy such as MPDS makes it highly desirable.

The chemical space in MPDS integrates various Gal-
axy chemical tools for structural analysis. Bray et al., 
developed the Galaxy ChemicalToolbox which provides 
the large assembly of tools for drug discovery and chem-
informatics [31]. MPDS-CL provides access to the Gal-
axy ChemicalToolbox, as well as a host of other tools. 
These tools are PaDEL [53], CDK [54], Rdkit [49], Mor-
dred [55], file format converters, JMol [56] editor and 
molecular visualizer for drawing and visualizing mole-
cules along with a variety of search options (as described 
in Table 4 and Fig. 7). BCS classification, toxicity filter, 
drug likeness and natural product likeness filter are some 
other tools that are currently available and it is our quest 
to continually augment more filters like these. Efforts to 
add several of the in-house developed machine learning 
tools based on the properties of the molecule, such as the 
antiviral, toxicity, and susceptibility of failure in clinical 
trials, blood–brain barrier permeability prediction are in 
the pipeline [57–60].

The search methods and options

The search methods provided in the MPDS-CL is the way 
to navigate through the chemical space by employing vari-
ous search options such as exact structure, sub-structure, 
fingerprint, and molecular property-based search. The idea 
of the exact structure search is to generate the exact molecule 
as provided by the user. Whereas the substructure search is 
employed to identify a series of molecules with the desired 
query. The substructure search is essentially employed to 
check for molecules that is built up with other scaffolds and 
in a way to explore the synergistic effects of different build-
ing blocks while interacting with the biological receptors. 
The results of the substructure search in MPDS-CL can be 
performed by providing a query molecule in.sdf/.mol/.smi 
format, which on search will result in giving the series of 
molecules with the substructure match in independently 
existing form. The fingerprint search is a search option to 
explore the molecules through specific classes. All classes 
are categorized under the main category viz., monocyclic, 
bicyclic, tricyclic, tetracyclic, and pentacyclic and a few 
special classes. The idea behind this search is to provide an 
understanding of the 56 classes, without asking the user to 
explicitly search for a specific molecule. Next in the line, is 
the search option based on molecular properties, where the 
user can search for molecules belonging to a range of prop-
erties as well as it comes with multiple filters to efficiently 
look for molecules with desired properties.

Table 4  Description of different modules available in MPDS–CL

Modules Description

Get Data Locally upload data/files of different file formats
Chemical structure editor Draw a molecule (using Jmol editor) and export the SMILES
MPDS-AadharID search A molecule from the MPDS-CL can be searched in various ways in addition to MPDS-AadharID-

based search
Exact structure search User can upload/draw structure and search
Sub-structure search Search with sub-structure based on the user defined fragments
Properties-based search Screening the molecules based on molecular properties
Fingerprint-based search Identifying the structural features from the canonical SMILES
Fragmenter Split a molecule to smaller fragments based on predefined rules (i.e., RECAP rules)
Fragment-based search Searching the MPDS fragment library based on nature of fragments
File format conversion Small molecules file format converter (i.e.,.pdb,.sdf,.smi,.inchi and.mol) for different cheminformatics 

operation
3D coordinates generation Adding hydrogen atom to the molecule and convert the structure from 2 to 3D
Descriptors calculation Calculation of different descriptors based on “PaDEL”, “CDK”, “RDkit”, “Mordred”
Physico-chemical properties calculation Calculating the physico-chemical properties for a set of molecules
Estimation of drug-likeness Calculation of different drug-like rules, using DruLiTo, Lipinski’s rule, Ghose filter, etc
BCS classification Classifying the query molecule based on Biopharmaceutical Classification System (BCS)
Toxicity filter Identifying the toxicophores for the given molecule
Natural product likeness calculator Calculation of the natural product likeness score for the user given molecule
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Each search method is designed to cater to a wide range 
of research objectives, allowing users to perform targeted 
searches as per their interests. The diverse search function-
alities provided by the MPDS-CL enhance its utility as a 
valuable resource for researchers from various disciplines, 
empowering them to explore the chemical space, discover 
novel molecules, and gain valuable insights into compound 
properties (Fig. 7).

MPDS‑AadharID

The name MPDS-AadharID is inspired by a thought process 
of comparing molecules to human beings. If a particular 
task has to be accomplished, naturally the focus is to find 
the right person, who is capable of executing the given task 
efficiently. Similarly, in the quest to discover a blockbuster 
drug, high value catalyst or any potentially useful molecule, 
the thrust will obviously be on to find the right molecule. 
As every molecule is unique in the chemical space, which 
is similar to a human in the population space, and therefore 
it has been our endeavour to assign a distinct ID to every 
molecule which traces its structural identity.

Each of these unique features has been clearly defined, 
and they have chosen to represent a “class” and thus, 56 
classes were designated in MPDS-CL. As molecules can 
have multiple features, we employed priority rules and 
the class number is arranged in the ascending order. The 
56-bit vector available in the MPDS-AadharID reveals the 
other features of a molecule, i.e., if a molecule belongs to 
class 45, but also contains the features of class 34, 23, and 
8, then the 56-bit vector is 0000000100000000000000100
0000000010000000000100000000000.

The MPDS-AadharID of each existing molecule in the 
MPDS-CL is intended to provide all the information of 
a given molecule in a sequential fashion. The first page 
provides the critical details, which are common and com-
putable to all the molecules in the chemical space, and it 
is generated on the fly by MPDS-CL (Fig. 8). However, 
molecules will have a varying detail of information and 
the subsequent pages of MPDS-AadharID can be custom 
designed to populate and use and as this information is 
specific to a given molecule and as such will not be gener-
ated on the fly.

Fig. 7  A schematic diagram explaining different search methods available in MPDS-CL. The database information is connected with the Post-
greSQL server. The query via MPDS-CL is connected to the database via Galaxy and fetches the information from the server
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Conclusions

MPDS-CL is a non-redundant chemical library represents 
about 150 million unique molecules, which was built by 
compiling a large dataset of molecules obtained from 42 
publicly available chemical databases. It is an attempt to 
systematically classify the chemical space by infusing the 
structural-chemical insights which help in the design of mol-
ecules. The scheme of dividing molecules into 56 classes has 
been arrived at methodically by exploring various ‘structural 
features’ which determine the identity of a given molecule 
and all these molecules already available or easily acces-
sible synthetically. The MPDS-CL provides various search 
options driven by MPDS-AadharID search, exact structure 

search, sub-structure search and fragment-based search, 
which helps in elegantly exploring the chemical space. The 
study has employed various cheminformatics, and other 
informatics methods to systematically analyse the chemi-
cal space and aid in the rational design of molecules with a 
desired property.

If one were to describe any effort to design a molecule, it 
is finding the right molecule for performing a given task. In 
the quest to discover a drug, catalyst or any special property 
of a molecule, it is all about hitting the right spot in the 
realm of chemical space. Further, understanding the struc-
tural and topological diversity of molecules and establishing 
various data-oriented analytics for structure–property and 
activity relationships is a topic of outstanding importance 

Fig. 8  The first page of MPDS-AadharID generated from MPDS-
AadharID search option of MPDS Compound Library. It depicts 
minimal critical information, which connects the unique MPDS-Aad-

harID number with: a canonical SMILES, b InChIKey, c molecular 
formula, d 2D structure, e 56-bit fingerprint, f IUPAC name, and g 
molecular properties
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in molecular design. Thus, when molecules are grouped in 
structurally similar categories, it unlocks newer possibili-
ties for finding repurposable spectrums of varied interests 
and applications. Thus, the present work may be exploited 
in various fields, such as drug discovery, smart materials 
design, finding environmentally friendly pesticides, her-
bicides, petrochemicals, and other broad applications of 
chemical molecules.
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