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A B S T R A C T

MicroRNAs (miRNAs) are important in gene expression regulation and many other biological processes and have 
emerged as promising therapeutic targets. Identifying potential drug-miRNA relationships is helpful in disease 
therapy and pharmaceutical engineering in medical research. However, accurately predicting these relationships 
remains a significant computational challenge. This study introduces MDbDMRP, a novel molecular descriptors- 
based drug-miRNA relationship prediction computational model designed to address this challenge. MDbDMRP 
leverages the power of machine learning to predict new drug-miRNA associations and non-associations. The 
model achieves exceptional performance, exceeding an average score of 0.92 across various evaluation metrics, 
including accuracy, precision, recall, and F1-score. Furthermore, it demonstrates a remarkable ability to 
distinguish between positive and negative interactions, as evidenced by an outstanding AUC-ROC score of 
0.9864. The results obtained from MDbDMRP were further validated through molecular docking, reinforcing its 
performance. These results position MDbDMRP as a valuable tool for researchers aiming to unlock the potential 
of miRNAs in drug discovery.

1. Introduction

A class of non-coding RNAs, microRNAs are small, 22 to 25 nucle-
otides long, involved in gene regulation and RNA silencing [1]. Since the 
discovery of the first miRNA in Caenorhabditis elegans by Lee et al. [2], a 
wealth of research has unveiled the crucial functions of miRNAs in 
orchestrating diverse physiological processes. These include regulating 
cell growth [3], differentiation [4], and death [5], orchestrating im-
mune responses [6], and fine-tuning gene expression levels [7]. More-
over, mounting evidence demonstrates a strong link between the 
dysregulation of key miRNAs and the development of various complex 
human diseases. The pervasive influence of miRNAs across various 
biological processes, both normal and abnormal, makes them a capti-
vating class of potential drug targets. While traditional experimental 
methods for miRNA analysis, such as miRNA sequence analysis (using 
high-throughput sequencing), real-time qPCR, and Northern blot, pro-
vide valuable insights, they come with significant drawbacks. These 
methods are often labor-intensive, time-consuming, and expensive due 
to the involvement of specialized equipment, reagents, and personnel. 
This raises the need for faster, more cost-effective alternatives for 

identifying potential small molecule-miRNA associations Throughout 
the arduous stages of drug development, computational models pre-
dicting drug-miRNA associations offer invaluable assistance. By illumi-
nating potential interactions, these models can guide researchers toward 
the most efficacious drugs, significantly reducing the financial burden 
and uncertainty associated with extensive experimentation [8].

Notably, within this realm, predicting drug-miRNA associations 
represents a pivotal step in advancing drug research and development. 
With the high cost and time required for traditional experimental vali-
dation, efficient computational tools hold immense potential to accel-
erate the discovery of promising drug-miRNA associations. As research 
into predicting drug-miRNA associations intensifies, valuable resource 
repositories are emerging. Databases like ncRNADrug [9], SM2miR 
[10], NoncoRNA [11], mTD [12], and NRDTD [13] offer a wealth of 
information for exploring these interactions. This wealth of data fuels 
the development of increasingly accurate and effective drug-miRNA 
association prediction models. Researchers utilize diverse computa-
tional models to predict potential drug-miRNA interactions, primarily 
categorized into three approaches: biological network-based models, 
machine learning-based models, and other predictive methods [14].
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DAESTB [15] combines an autoencoder to extract hidden patterns 
with gradient-boosting trees to identify small molecule – miRNA pairs. 
EKRRSMMA [16], using feature reduction and ensemble learning, 
accurately predicts interactions between small molecules and micro-
RNAs, potentially aiding drug development and disease treatment. The 
GISMMA [17] model uses network analysis and graphlet interactions to 
predict small molecule-miRNA associations, achieving high accuracy 
and potential benefits for disease therapy. Yichen Zhong et al. presented 
a multitask joint learning framework (MTJL) [18] by constructing a 
comprehensive similarity network for drugs and miRNAs, leveraging a 
graph autoencoder (GAE) to derive distinct embedding representations 
for both. DLP [19] uses subspace segmentation and DLSR algorithm to 
identify potential miRNA drug targets. PUDT [20] and HGCNMDA [21] 
are computational models designed to enhance drug discovery and 
disease understanding by predicting drug–target interactions and miR-
NA–disease associations, respectively. PUDT improves interaction pre-
dictions by categorizing unknown samples, while HGCNMDA leverages 
a multi-relational network to capture complex miRNA–disease links. 
SMMARTs [22] employs graph regularization techniques within het-
erogeneous networks to discover associations between small molecules 
and microRNAs. GCFMCL [23] and GCNNMMA [24] leverage graph 
neural networks to model molecular structures and utilize contrastive 
learning or CNNs to enhance the prediction. The SMAJL [25] framework 

employs a joint learning approach that uses a Restricted Boltzmann 
Machine to integrate variety of pharmacology, network information, 
structural and sequence information to predict association scores. 
MHCLMDA [26] and KBMF-MDI [27] are computational methods for 
predicting miRNA–disease associations to support disease understand-
ing and treatment. MHCLMDA uses hypergraph contrastive learning to 
capture complex multi-view interactions, while KBMF-MDI employs 
Bayesian matrix factorization on miRNA and disease similarities, with 
both approaches outperforming existing models in accuracy for uncov-
ering unknown associations. GNMFDMA [28] and DCMF [29] utilize 
matrix factorization methods to predict associations between drugs and 
miRNAs. SMANMF [30] aims to reveal unknown relationships between 
small molecules and miRNAs using non-negative matrix factorization. 
MFIDMA [31] and DMR-PEG [32] highlight the significance of 
capturing complex relationships in drug-miRNA networks through 
advanced neural architectures.

Here, we present a new methodology to predict drug-miRNA asso-
ciations using machine-learning methods based on the molecular de-
scriptors of drugs and miRNAs. Molecular descriptors bridge the gap 
between complex molecular structures and numerical data, enabling 
computational tools to decipher physicochemical properties, predict 
biological activities, and guide drug discovery. By capturing diverse 
structural information, tailored molecular descriptors empower the in- 

Table 1 
Selected features used to train the MDbDMRP model.

Molecule Module Selected Features

Drug 
Molecules

Adjacency Matrix SpMAD_A
Autocorrelation AATS8p, AATS2i, AATS4i, AATS6i, ATSC2s, ATSC3s, ATSC5Z, ATSC5v, ATSC5p, ATSC6i, AATSC4c, 

AATSC7p, AATSC5i, MATS8c, MATS1d, GATS5c, GATS6c, GATS2d, GATS5se, GATS8se
Burden-CAS-Unlike-Topological (BCUT) BCUTc-1 l, BCUTs-1 h, BCUTp-1 h
Charged Partial Sub Area (CPSA) RPCS
Electrotopological State (Estate) MAXsCH3, MINdssC
Molecular Representation of Structure based on 
Electron Diffraction (MoRSE)

Mor24, Mor11m, Mor19m, Mor24v, Mor25v, Mor32v, Mor09se, Mor24se, Mor27se, Mor32se, Mor08p, 
Mor11p

Molecular Operating Environment Types 
(MoeTypes)

EState_VSA2

MolecularDistanceEdge MDEO-12
TopologicalCharge JGI3

miRNA Composition Based Features CDK_AC, CDK_AG, CDK_CG, CDK_GC, NRI_C, NRI_U, DDON_A, RDK_AA, RDK_AG, RDK_CC, RDK_GA, 
ENT_NL_A, ENT_NL_C, ENT_NL_G, PDNC_AA, PDNC_GA,

Cross Correlation Based Features DCC_p1_p10_lag1, DCC_p1_p13_lag1, DCC_p1_p17_lag1, DCC_p1_p20_lag1, DCC_p2_p1_lag1, 
DCC_p2_p13_lag1, DCC_p2_p14_lag1, DCC_p2_p16_lag1, DCC_p5_p12_lag1, DCC_p5_p21_lag1, 
DCC_p10_p11_lag1, DCC_p10_p17_lag1, DCC_p10_p21_lag1, DCC_p12_p6_lag1, DCC_p13_p1_lag1, 
DCC_p13_p5_lag1, DCC_p13_p17_lag1, DCC_p13_p22_lag1, DCC_p14_p2_lag1, DCC_p14_p21_lag1, 
DCC_p14_p22_lag1, DCC_p16_p17_lag1, DCC_p17_p10_lag1, DCC_p17_p18_lag1, DCC_p17_p21_lag1, 
DCC_p18_p16_lag1, DCC_p18_p21_lag1, DCC_p19_p20_lag1, DCC_p20_p10_lag1, DCC_p20_p16_lag1, 
DCC_p20_p18_lag1, DCC_p20_p22_lag1, DCC_p21_p2_lag1, DCC_p21_p5_lag1, DCC_p21_p10_lag1, 
DCC_p21_p11_lag1, DCC_p21_p13_lag1, DCC_p21_p18_lag1, DCC_p21_p20_lag1, DCC_p22_p1_lag1, 
DCC_p22_p10_lag1, DCC_p22_p12_lag1, DCC_p22_p13_lag1,DCC_p1_p15_lag2, DCC_p1_p17_lag2, 
DCC_p1_p18_lag2, DCC_p2_p5_lag2, DCC_p2_p13_lag2, DCC_p2_p15_lag2, DCC_p2_p19_lag2, 
DCC_p2_p22_lag2, DCC_p10_p11_lag2, DCC_p11_p17_lag2, DCC_p12_p10_lag2, DCC_p13_p6_lag2, 
DCC_p13_p18_lag2, DCC_p13_p20_lag2, DCC_p13_p21_lag2, DCC_p14_p20_lag2, DCC_p15_p12_lag2, 
DCC_p15_p13_lag2, DCC_p15_p20_lag2, DCC_p16_p1_lag2, DCC_p16_p10_lag2, DCC_p16_p13_lag2, 
DCC_p16_p17_lag2, DCC_p17_p16_lag2, DCC_p17_p20_lag2, DCC_p17_p21_lag2, DCC_p17_p22_lag2, 
DCC_p18_p14_lag2, DCC_p18_p21_lag2, DCC_p19_p2_lag2, DCC_p19_p13_lag2, DCC_p19_p20_lag2, 
DCC_p20_p2_lag2, DCC_p20_p18_lag2, DCC_p20_p21_lag2, DCC_p21_p2_lag2, DCC_p21_p6_lag2, 
DCC_p21_p12_lag2, DCC_p21_p18_lag2, DCC_p21_p20_lag2, DCC_p22_p2_lag2,

Auto Cross Correlation Based Features DACC_p13_lag1, DACC_p19_lag1, DACC_p21_lag1, DACC_p1_lag2, DACC_p2_lag2, DACC_p21_lag2, 
DACC_p1_p19_lag1, DACC_p2_p6_lag1, DACC_p2_p17_lag1, DACC_p2_p20_lag1, DACC_p2_p22_lag1, 
DACC_p9_p1_lag1, DACC_p12_p5_lag1, DACC_p12_p10_lag1, DACC_p12_p14_lag1, DACC_p12_p16_lag1, 
DACC_p13_p2_lag1, DACC_p13_p10_lag1, DACC_p13_p14_lag1, DACC_p13_p16_lag1, DACC_p14_p19_lag1, 
DACC_p15_p13_lag1, DACC_p15_p14_lag1, DACC_p16_p1_lag1, DACC_p16_p6_lag1, DACC_p17_p11_lag1, 
DACC_p17_p15_lag1, DACC_p19_p1_lag1, DACC_p19_p10_lag1, DACC_p19_p17_lag1, DACC_p20_p2_lag1, 
DACC_p20_p5_lag1, DACC_p20_p13_lag1, DACC_p20_p17_lag1, DACC_p20_p19_lag1, DACC_p21_p15_lag1, 
DACC_p21_p16_lag1, DACC_p22_p17_lag1, DACC_p22_p21_lag1, DACC_p1_p6_lag2, DACC_p1_p13_lag2, 
DACC_p1_p16_lag2, DACC_p1_p20_lag2, DACC_p2_p10_lag2, DACC_p2_p16_lag2, DACC_p2_p17_lag2, 
DACC_p2_p18_lag2, DACC_p6_p10_lag2, DACC_p9_p2_lag2, DACC_p10_p1_lag2, DACC_p10_p16_lag2, 
DACC_p10_p18_lag2, DACC_p12_p16_lag2, DACC_p14_p6_lag2, DACC_p14_p16_lag2, DACC_p15_p21_lag2, 
DACC_p16_p20_lag2, DACC_p17_p15_lag2, DACC_p18_p1_lag2, DACC_p18_p2_lag2, DACC_p18_p12_lag2, 
DACC_p18_p20_lag2, DACC_p19_p21_lag2, DACC_p20_p1_lag2, DACC_p20_p5_lag2, DACC_p21_p1_lag2, 
DACC_p21_p10_lag2, DACC_p21_p16_lag2

Pseudo Correlation Based Features PC_PDNC_GG
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silico modelling of molecules, accelerating research and unlocking 
hidden secrets in the realm of chemical and biological interactions. 
MDbDMRP serves as a powerful tool for accelerating drug discovery 
efforts by enabling the identification of potential drug repurposing op-
portunities and novel therapeutic targets. By predicting drug-miRNA 
interactions with high confidence, the model can help prioritize com-
pounds for further experimental validation and clinical development. 
This opens exciting possibilities for designing targeted therapies that 
leverage the regulatory power of miRNAs, ultimately paving the way for 
more effective and personalized treatments.

2. Materials and methods

2.1. Dataset

We collected known drug-miRNA associations from the ncRNADrug 
database [9]. This initial dataset contained 13,503 interactions between 
2122 miRNAs and 630 drugs. We then cleaned the data, removing 
missing or invalid entries (like dead miRNAs or drugs without 3D in-
formation). This resulted in a final set of 11,446 observations. To create 
this list of potential associations, we downloaded the sequence 

Fig. 1. Workflow of MDbDMRP.

Fig. 2. Confusion Matrix displaying the model’s prediction results.
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information on all human miRNAs from miRBase [33]. We prepared the 
data for further analysis to explore potential new interactions and 
divided it into two parts. The first section lists interactions between 
miRNAs and drugs that have already been documented in research. The 
second section explores possibilities beyond currently known in-
teractions. It includes all the remaining miRNAs (not found in the known 
associations) paired with each drug from the known associations using 
random sampling. To construct the negative samples, we followed the 
common approach of pairing drugs and miRNAs that are not known to 
be associated based on current biological knowledge and databases. 
Specifically, we generated random drug-miRNA pairs by ensuring that 
these pairs did not overlap with the known positive associations.

2.2. Descriptors computation

Molecular descriptors are numerical representations capturing 
various aspects of a molecule’s structure for computational analysis. 
These mathematical values are used quantitatively to describe mole-
cules’ chemical and physical properties, which can be a valuable 
knowledge set for computational calculations. Mordred [34] is a Python- 
based tool for calculating molecular descriptors, designed to integrate 
seamlessly with RDKit. It offers over 1800 descriptors covering both 2D 
and 3D properties, making it highly versatile for cheminformatics and 
machine learning applications. Mordred’s compatibility with python 
libraries like pandas and scikit-learn simplifies data processing and 
model building, while its scalability on cloud and high-performance 
platforms makes it ideal for handling large datasets efficiently. Nfea-
ture [35] is a versatile package for nucleic acid analysis. It empowers 
users to explore the composition, distribution, and correlation patterns 
within nucleotide sequences, facilitating insightful biological in-
terpretations. Nfeature calculates 14,385 features for RNA sequences 
and the same was used to calculate the miRNA features.

2.3. Data preprocessing and feature selection

Various techniques come into play in the quest to identify the most 
informative features of machine learning models. In the initial 

preprocessing, features with a high proportion of missing values were 
removed. The threshold was set at 0.5, meaning that if over 50 % of the 
values for a given feature were missing, that feature was excluded from 
the analysis. Features with zero variance were removed as they lack 
discriminatory power. Specifically, columns with constant values across 
all samples were identified and excluded from the dataset since they do 
not contribute meaningful information to the model’s predictions. To 
address redundancy, pairwise correlation analysis was applied to iden-
tify and remove highly correlated features. The threshold for “high 
correlation” was set at 0.8. For pairs of features where the correlation 
exceeded this threshold, we compared each feature’s correlation with 
the target variable. The feature with a lower correlation to the target was 
removed, retaining the one that provided the most relevant predictive 
information. RFECV (Recursive Feature Elimination with Cross- 
Validation) is an iterative process that ranks features by their impor-
tance and recursively removes the least impactful ones to optimize 
model performance. RFECV was used with a RandomForestClassifier to 
select impactful features, employing a StratifiedKFold with 10 splits 
(n_splits = 10) to ensure balanced class distribution across folds. We set 
step size as 1 to remove one feature per iteration for precise selection. 
The final feature set was chosen based on accuracy across cross- 
validation folds. Through these feature selection methods, the 
following features were identified as relevant for training the ML model: 
Adjacency Matrix, Autocorrelation, Burden-CAS-Unlike-Topological 
(BCUT), Charged Partial Sub Area (CPSA), Electrotopological State 
(Estate), Molecular Representation of Structure based on Electron 
Diffraction (MoRSE), Molecular Operating Environment Types (Moe-
Types), MolecularDistanceEdge, TopologicalCharge for drugs and 
Composition Based Features, Cross Correlation Based Features, Auto 
Cross Correlation Based Features, Pseudo Correlation Based Features for 
miRNAs. A detailed description of the features used is given in Table.1.

2.4. Machine learning algorithms

This study used the tree-based pipeline optimization tool TPOT [36] 
and lazy predict project separately to identify the best algorithm for the 
ML model. TPOT uses genetic programming to generate the most 

Fig. 3. Violin Plot displaying density curves for each evaluation method.
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suitable pipeline for the given dataset, thus decreasing computational 
costs and saving time. In TPOT, the generations were set to 5, which 
means TPOT goes through five rounds of refining and improving 
different model pipelines. The population size was set to 20, allowing 
TPOT to test 20 models in each round, so it has a wide range of options to 
explore. The cv (cross-validation) was set to 5, which splits the data into 
five parts, giving a balanced and accurate performance assessment for 
each model. Lastly, random state was set to 42 to ensure that results are 
consistent and reproducible by keeping data splits and random choices 
the same each time. Lazy Predict is a Python library that can provide 
useful features such as model selection and hyperparameter optimiza-
tion, which help researchers get the most out of the ML model. In Lazy 
Predict, custom metric was set to None, so Lazy Predict uses default 
metrics like accuracy to quickly compare which models perform best. 
The combination of TPOT and Lazy Predict provided a thorough over-
view of various models and pipelines. TPOT’s genetic programming 
allowed for deep exploration and optimization, while Lazy Predict’s 
quick comparisons helped validate XGBoost’s potential as the most 
suitable model for our dataset. Both tools were instrumental in selecting 
and finalizing XGBoost based on performance, accuracy, and computa-
tional cost, aligning with the objectives of the study.

2.5. Model implementation

To build our classification model, we leveraged the powerful 
XGBClassifier from the xgboost library (version 1.4.2), known for its 
efficiency and accuracy. We split our dataset into a 70 % training set and 
a 30 % testing set, ensuring reproducibility with a fixed random state. 
We configured the XGBClassifier with key parameters like use_labe-
l_encoder as False to avoid warnings and eval_metric as ‘logloss’ to guide 
optimization. After training the model on the training set, we made 
predictions on the unseen test set and assessed its performance using 
multiple metrics (Fig. 1). To ensure future usability, we saved the 
trained model using Python’s pickle library.

2.6. Performance evaluation metrics

We set up ways to test how well the new model works. We employed 
leave-one-out cross-validation (LOOCV) and 5-fold cross-validation to 
solidify our confidence in the model’s performance. LOOCV ensures that 
every single data point is utilized for testing exactly once [37]. The 
remaining data points are then combined to form the training set. In 5- 
fold cross-validation, we split the dataset evenly into five groups. We 
tested the model with one group each time while using the others to 
make predictions. Additionally, we looked at accuracy (Acc.), sensitivity 

Fig. 4. The AUC Curve of the 5-fold Cross-Validation of the model MDbDMRP.
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(Sen), specificity (Spec.), and Matthews Correlation Coefficient (MCC) 
to get a picture of the effectiveness of our model. The calculation for-
mulas for these metrics are as follows:

Acc =
TP + TN

TP + TN + FP + FN
, Sen =

TP
TP + FN

, Spec =
TN

TN + FP 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

√

Along with these metrics, the AUC-ROCs curve demonstrates the 
model’s performance. The confusion matrix, a tool for evaluating the 
performance and accuracy of a computational model, displays true 
positives, false positives, true negatives, and false negatives, represent-
ing the model’s predictive power.

3. Predictive results and validation of MDbDMRP

We employed several feature selection techniques and model 
hyperparameter optimization methods to develop a machine learning 
model that perfectly balances accuracy and interpretability. This 
meticulous process allowed us to identify the optimal set of features. 
Leveraging TPOT [36], a powerful tool designed to explore various 

machine learning pipelines, we efficiently identified the XGBClassifier 
algorithm as the most suitable architecture for all our investigated 
properties.

3.1. Leave-one-out cross-validation (LOOCV)

To thoroughly assess the performance of MDbDMRP, we opted for 
Leave-One-Out Cross-Validation (LOOCV). This robust validation tech-
nique, a specialized form of k-fold cross-validation, ensures that every 
single data point is utilized for testing exactly once [37]. The remaining 
data points are then combined to form the training set. MDbDMRP 
achieved stellar performance across all evaluated metrics, including 
accuracy, precision, recall, F1 score, and balanced accuracy, with an 
outstanding average score of 0.92 (Fig. 2).

3.2. Cross-validation results

To further solidify our confidence in the model’s ability to perform 
well on unseen data, a standard evaluation process known as 5-fold 
cross-validation was implemented. This method divides the data into 
training and testing sets, allowing us to assess the model’s generaliz-
ability [38]. We compared MDbDMRP with several other models, 
namely: DLP [19], GCFMCL [23], SMMART [22], SMAJL [25], 

Fig. 5. The Precision-recall Curve of MDbDMRP.
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SMANMF [30], GCNNMMA [24], GNMFDMA [28], MFIDMA [31], 
DMR-PEG [32] and DCMF [29]. The models were tested on their own 
specified dataset and MDbDMRP was tested on its own dataset. The 
AUCs of DLP, GCFMCL, SMMART, SMAJL, SMANMF, GCNNMMA, 
GNMFDMA, MFIDMA, DMR-PEG and DCMF are 0.8729, 0.9528, 
0.8588, 0.8746, 0.8429, 0.9384, 0.9193, 0.9444, 0.9475 and 0.9868 
where average AUC of MDbDMRP is 0.9864. MDbDMRP maintained an 
average score of 0.9199 in evaluation metrics, including accuracy, 
precision, recall, F1 score, balanced accuracy, and Matthews Correlation 
Coefficient (Fig. 3). This reinforces the model’s effectiveness in tackling 
real-world applications with a high degree of certainty. Additionally, the 
exceptional average AUC-ROC score of 0.9864 indicates the strong 
ability of the model to distinguish between positive and negative classes 
(Fig. 4). The precision-recall curve also validates the performance of 
model (Fig. 5). This approach enables researchers to ensure the model 
performs well not only on the specific training data but also on unseen 
data, thereby enhancing the model’s performance credibility.

3.3. Case study

To further validate the performance of MDbDMRP, we conducted a 
case study. miR-21 is one of the extensively studied miNRA. Many 
studies have shown the role of miR-21 in different types of cancer 
[39–42]. In later studies, miR-21 was established to be an oncogenic 
microRNA [43–50]. So we used MDbDMRP to predict drugs that may 
bind to miR-21. The model has shown that Metformin (CID4091) and 
Lidocaine (CID3676) can bind to miR-21 (pdb id:2mnc). To validate our 
predictions, we performed molecular docking to show the binding of 
these predicted drug molecules to miR-21. ZINC4574788 was identified 
as the potential molecule for docking against miR-21 [51]. CDOCKER a 
molecular docking technique which is built on CHARMM, can deliver 
extremely precise docking outcomes [52]. We analyzed the interaction 
energy and profile of Metformin, Lidocaine and ZINC4574788 (Fig. 6). 
CDOCKER score for Metformin, Lidocaine and ZINC4574788 were -33 

kcal/mol, -13 kcal/mol and -11 kcal/mol respectively. The drug mole-
cules predicted using MDbDMRP showed improved performance in 
docking experiments and yielded better results, highlighting the model’s 
effectiveness in predicting drug-miRNA associations.

4. Concluding remarks and future perspectives

Many researchers are looking for computational methods to decipher 
new drug-miRNA associations. This paper represented a molecular 
descriptor-based method, MDbDMRP, that deduced the potential rela-
tionship between miRNAs and drug molecules by combining known 
drug-miRNA associations with molecular descriptors and machine- 
learning-based methods. We constructed a framework that integrated 
molecular descriptors, feature selection methods, and machine-learning 
algorithms to train the model and predict new potential relationships 
with unseen data. Since MDbDMRP incorporated all the miRNAs for 
Homo sapiens available in the miRBase [33], it can show the most ac-
curate predictions. The stellar performance of MDbDMRP can be 
attributed to the following points. First, various molecular descriptors 
were calculated for drugs and miRNAs, the mathematical representa-
tions of molecular properties generated by algorithms. Second, feature 
selection techniques were employed to select the relevant and important 
feature subsets required to train an ML model. Feature selection tech-
niques helped remove redundant and noisy data, which added to 
decreased computational complexity and better prediction accuracy for 
the model. Third, using genetic programming, the tree-based pipeline 
optimisation tool (TPOT)18 was used to generate the most suitable 
pipeline for our dataset, thus reducing the computational cost and time. 
Fourth, XGBClassifier, a special implementation of XGBoost (eXtreme 
Gradient Boosting), was used to train the model, leveraging the benefits 
of XGBoost like performance, accuracy, flexibility and regularization. 
The efficient data handling, parallel processing and out-of-core 
computation reduce the computational cost, and regularization pre-
vents overfitting. Finally, MDbDMRP can predict new drug-miRNA 

Fig. 6. Interaction and binding pose of Lidocaine, Metformin and ZINC457488 with precursor miR-21.
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relationships on unseen datasets.
The performance of MDbDMRP was evaluated with leave-one-out 

cross-validation and 5-fold cross-validation. The model achieved AUC- 
ROC score of 0.9864. The drug molecules predicted by MDbDMRP 
demonstrated superior performance in docking experiments and pro-
duced favorable results, underscoring the model’s effectiveness in pre-
dicting drug-miRNA associations. MDbDMRP can be used to predict the 
relationship of any drug molecule with miRNAs, which could be valu-
able information for scientists studying drug repositioning.

However, MDbDMRP has some limitations also. For example, users 
need to calculate molecular descriptors from the tools used in the study, 
i.e. Mordred [34] and NFeature [35] for drugs and miRNAs, respec-
tively. Users must also generate new files with their molecules of interest 
and their respective molecular descriptors to predict the relationships. 
We anticipate that more computational models combined with molec-
ular descriptors could be developed to predict new drug-miRNA re-
lationships for better drug repositioning and miRNA-targeted drug 
development.
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