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Abstract 
Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem 
that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitation has resulted into 
underdevelopment of plant regulatory research and rampant use of Arabidopsis-like model species, generating misleading results. Here, 
we report a revolutionary transformers-based deep-learning approach, PTFSpot, which learns from TF structures and their binding 
regions’ co-variability to bring a universal TF-DNA interaction model to detect TFBR with complete freedom from TF and species-
specific models’ limitations. During a series of extensive benchmarking studies over multiple experimentally validated data, it not only 
outperformed the existing software by >30% lead but also delivered consistently >90% accuracy even for those species and TF families 
that were never encountered during the model-building process. PTFSpot makes it possible now to accurately annotate TFBRs across 
any plant genome even in the total lack of any TF information, completely free from the bottlenecks of species and TF-specific models. 
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Introduction 
TF-binding regions is central to understanding the transcriptional 
regulation across the genome. The rise of high-throughput tech-
nologies to detect such TF-deoxyribonucleic acid (DNA) interac-
tions like protein binding microarrays (PBMs) [1], ChIP-Seq [2], and 
its various variants like ChIP-exo [3] and DAP-seq [4] has resulted 
into an explosion of DNA-binding region data for various TFs [5]. 
To this date, there are ∼128,467 ChIP-seq experiments reported 
at Gene Expression Omnibus (GEO)/Sequence Read Archive (SRA) 
for human alone. However, capturing all TF-DNA interactions 
through such experiments in any organism itself is a costly and 
impractical affair. One essentially requires some able computa-
tional approach to identify such TFBRs. 

Unlike animals where human has been the main focus, plants 
have enormous number of species that define an extremely huge 
search space for possible experiments to detect TF-DNA interac-
tions. If one compares the status of developments in plants with 
respect to animals, a huge gap is evident with hardly eight species 
of plants sequenced for their TFs’ binding regions, covering merely 
∼700 ChIP/DAP-seq experiments for selected few TFs, mostly 
related to Arabidopsis thaliana and Zea mays. This lag in experi-
mental data is equally reflected in terms of software resources 
and algorithms development for plant TFBR discovery. While 
for animal/human, several software have been developed, there 

has been very limited development for plants. Table 1 lists some 
software available for animals and plants where clear skew is visi-
ble (more information available in Supplementary Table 1). There-
fore, it becomes urgent to develop computational approaches that 
could model TF-DNA interactions accurately for plants system, 
which may also reduce the dependence on costly binding experi-
ments to a great extent. 

The existing software tools are overtly dependent upon the old 
school of motif discovery and user-defined motifs, while reports 
suggest that TF binding is more about context and surroundings 
[17, 22–24]. The context and surroundings around active binding 
motifs are defined by local sequence and shape preferences in 
highly specific manner. The motif-finding step itself is heavily 
dependent upon binding experiments like PBM and DAP/ChIP-seq, 
on whose results, binding motif is defined for any given TF. Many 
TFs share a similar binding motif but yet differ in their binding 
due to local surroundings, shape, and contexts (Fig. 1a and b) [10, 
18, 20, 24]. Binding of a TF to its DNA target involves a prior 
step of local scanning of the target region in the range of around 
90–150 bases. The sequence compositions, degenerate consensus 
sequences, and cooperative motifs in the entire region were found 
contributing to the final halting of the TF around its target gene 
[25, 26]. Further to this, the choice of negative datasets with most 
of the software have been very relaxed as they randomly pick
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Table 1. Brief list of some of the published tools for TF-binding site identification 

S.No. Software Algorithm Encoding scheme Biological relevance Dataset Species Year Webserver (W)/ 
Standalone (S) 

1 GkmSVM 
[6] 

SVM gapped-kmer Detection and modulation of 
functional sequence elements 
in regulatory DNA 

ChIP-seq Human 2014 S 

2 pPromotif 
[7] 

Probabilistic 
modeling 

position weight matrix, 
conservation index (Ci 
Value), and 
inter-nucleotide 
dependence 

Plant transcription factor 
binding sites 

AGRIS 
database 
and TBFS 
annotations 
in 
GenBank 
entries 

Arabidopsis 
thaliana 

2014 S 

3 DeepBind 
[8] 

CNN One-hot encode Nucleic acid binding site 
prediction that can discover 
new patterns even when the 
locations of patterns within 
sequences are unknown 

ChIP-seq Human 2015 S 

4 KEGRU 
[9] 

Bi-GRU k-mer embedding Capture complex context 
information from the k-mer 
sequence 

ChIP-seq Human 2018 S 

5 k-mer grammar 
[10] 

Logistic 
regression 

k-mers Framework to exploit 
characteristic chromatin 
contexts and sequence 
organization to classify 
regulatory regions based on 
sequence features—k-mers 

ChIP-seq, 
Mnase-seq 

Zea mays 2019 S 

6 DESSO 
[11] 

CNN One-hot encoding Identify motifs and identify 
TFBSs in both sequence and 
regional DNA shape features 

ChIP-seq Human 2019 S 

7 DeepRAM 
[12] 

CNN/RNN One-hot/k-mer 
embedding 

Uses Different architectures 
using CNNs or RNNs to identify 
DNA/RNA sequence binding 
specificity 

ChIP-seq Human 2019 S 

8 WSCNNLSTM 
[13] 

Multi-instance 
learning and 
hybrid neural 
network 

k-mer embedding Identify in vivo protein-DNA 
binding 

ChIP-seq Human 2019 S 

9 SAResNet 
[14] 

Self-attention 
mechanism + 
residual 
network 

One-hot encoding Identify DNA-protein binding 
and learning of the long-range 
dependencies from the DNA 
sequence 

ChIP-seq Human 2021 S 

10 AgentBind 
[15] 

CNN + BiLSTM One-hot encoding Score the importance of context 
sequences 

ChIP-seq Human 2021 S 

10 SeqConv 
[16] 

CNN One-hot encoding Identify more precise TF-DNA 
interaction regions in plants 

ChIP-seq Z. mays 2021 S 

11 TSPTFBS 
[17] 

CNN One-hot encoding TFBS prediction in plants DAP-seq A. thaliana 2021 S 

12 DNABERT 
[18] 

BERT k-mer encoding Enables direct visualization of 
nucleotide-level importance 
and semantic relationship 
within input sequences for 
better interpretability and 
accurate identification of 
conserved sequence motifs and 
functional genetic variant 
candidates. 

ChIP-seq Human 2021 S 

13 Wimtrap 
[19] 

XGBoost Position weight 
matrices (PWMs) 

Identify condition- or 
organ-specific cis-regulatory 
elements and TF gene targets, 
with a great flexibility 
regarding the input data 

ChIP-seq A. thaliana 2022 S 

14 PlantBind 
[20] 

CNN + Bi-
LSTM 

One-hot encoding Identify potential TFBSs of 
multiple TFs simultaneously 

ChIP-seq A. thaliana 2022 S 

15 TSPTFBS 2.0 
[21] 

DenseNet One-hot encoding TFBS prediction in plants DAP-seq A. thaliana 2023 S/W 

∗∗HMM, Hidden Markov Model; SVM, Support Vector Machine; CNN, convolutional neural network; LSTM, Long Short Term Memory; GRU, Gated Recurrent 
Unit; RNN, recurrent neural network; BERT, Bidirectional Encoder Representations from Transformers. 
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Figure 1. Motif and data. (a) Clustering plot of the prime motifs for TF family AP2EREBP. The TFs share similarity in their prime motifs. (b) Different 
characteristics spectra for TFs belonging to same family, same cluster, and sharing similar prime motif. This highlights the importance of context. 
Despite having similar binding motifs, their binding preferences differ from each other due to context. (c) Lineplot for the data abundance for the 
collected 441 TFs (ChIP and DAP-Seq) across 56 different families. 

sequences and give too much weight to the consensus motif, 
which can actually occur even in the nonbinding regions, creating 
weak datasets on which learning have been done so far. Thus, 
giving so much weight to some motif alone to determine binding 
of a TF to DNA is itself a misplaced practice. 

The most alarming matter is the fact that the plant biologists 
are overtly using TF and species-specific model like those devel-
oped for Arabidopsis-specific TFs to report TF DNA binding in other 
species, attempting to answer transcriptional regulation misdi-
rected, generating potentially misleading results and information. 
Its root is the lack of studies, data for other species, and lack of 
reliable computational resources specific to plant systems. Plant 
genomes, in general, exhibit enormous variability [27, 28], and TFs 
and their binding regions display large degree of variability across 
the plant species [29–32]. Thus, what may be working in A. thaliana 
may not work in other plant species, and vice versa. Understand-
ing and tackling the variability of plant TFs and their TFBRs is 
the main challenge to develop plant-specific TFBR models where 
most of the currently existing software almost fail. 

With all this foundation and understanding of the challenges, 
we here present a unique and universal approach, PTFSpot, 

to detect TFBRs across plant genomes based on the following 
principles: 

1) Instead of overtly relying upon motifs, identify the most 
significant motifs specific to any TF and use it as the seed/anchor 
to identify most significant flanking regions for additional infor-
mation. This is because the TF scans a whole local region before 
halting at any given location, a process that depends a lot upon 
the flanking regions’ environment [25]. 

2) As already mentioned above, the enriched motifs are just 
one important feature. However, not all such motifs are bound by 
TF, as the flanking regions’ environment is also important. This 
information could become strongly discriminating if the negative 
set considers such unbound region’s motifs and flanking region 
information for them also. Therefore, use the significant motifs 
found in ChIP/DAP-seq data (positive datasets) to locate them in 
the unbound regions for the given experimental condition. This 
creates a highly confusing realistic negative dataset where overt 
importance of motifs is downplayed. 

3) Using the motif seeds as anchors, represent the flanking 
regions with appropriate words of dimers (captures sequence 
composition as well as base stacking information), pentamers

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/4/bbae324/7714599 by Institute O

f H
im

alayan Bioresources Tech. (Ihbt) user on 26 M
ay 2025



4 | Gupta et al.

(reflects DNA shape), and heptamers (reflecting sequence motifs). 
Doing this may boost the discriminating power through sequence 
and structural information of the flanking regions. 

4) Apply Transformers-like state-of-the-art deep-learning algo-
rithms that learn long-distanced as well as local associations 
among the words, their co-occurrence while learning upon several 
hidden features, something not possible for traditional machine 
learning as well as other existing deep-learning methods. 

5) Finding TFBR in cross-species manner failed so far because 
the existing approaches wrongly assume that binding preferences 
of a TF remains static across the species while overtly relying on 
some enriched motif found in one or few species. While the fact is 
that the TF sequence, structure, and its binding preferences vary 
across the species and even with their splice variants. Therefore, 
for reliable and universal TFBR discovery, one needs to learn the 
covariability between the TF itself and its binding preferences. If 
the available TFs and their binding preferences are learned this 
way together, they may bring a universal single model for TF:DNA 
interaction where covariability between structures and sequences 
could answer binding preferences for any TF. Thus, learn covari-
ability between TF structure and binding regions while assuming 
all TFs under one hypothetical TF that keeps changing its com-
position and structure (the corresponding TF) according to which 
the preferred binding region also changes. This learning even from 
a single species may bring a universal model, which can work 
across any species even for never-seen-before TFs, as variability 
and interaction relationship are learned. Thus, learning this way 
even on A. thaliana data alone, which is also the most abundant 
one, would turn to be a boon. 

Based on these principles, we have developed a Transformer-
DenseNet Deep-Learning universal system while learning from 
ChIP/DAP-Seq binding data for 436 TFs and their corresponding 
3D structural details. A highly extensive benchmarking study was 
carried out with three different experimentally validated datasets 
as well as never-seen-before species-specific experimental 
binding datasets to test the universality of PTFSpot. The results 
have been groundbreaking with performance lead of >30% 
over the existing software pool. Also, in terms of cross-species 
performance, PTFSpot has delivered an outstanding performance 
where it consistently scored above 90% accuracy for never-
encountered-before plant species and TFs. This is something that 
has never been witnessed before and stands revolutionary as it 
will empower to detect the TFBRs across any plant species for any 
TF with impeccable accuracy, and may even bypass the need of 
costly experiments like DAP-seq to detect the TFBRs. 

Materials and methods 
Data retrieval 
ChIP/DAP-seq peak data for 436 TFs spanning 5 753 198 dis-
tinct peaks were retrieved from PlantPAN3.0 (54 TFs) and Plant 
Cistrome Database (387 TFs) [33, 34]. Genomic sequences were 
extracted from the peak coordinates (Supplementary Table 2 
Sheet 1). All details on data retrieval are illustrated in Fig. 2. 

Approach to identifying motif seeds candidates 
and anchoring significant seeds 
For the 436 TFs from A. thaliana, ChIP/DAP-seq peak regions were 
scanned to identify prevalent 6-mer seed candidates with ≥70% 
identity, based on previous observations [33–36]. Every sequence 
was initially represented in the form for overlapping hexameric 
seeds, which were used to scan across the sequences for the 

most similar seed regions among themselves and were accord-
ingly piled up against each other. Enrichment of k-mers was 
determined by computing their occurrence probabilities in peak 
data relative to a random genomic background model following 
the peak length distribution. The seeds represented in ≥75% of 
peaks with significant enrichment (binomial test, P < .01) were 
selected and iteratively extended bidirectionally while retaining 
instances with ≥70% identity. For every extension step, statistical 
significance, the identity, and coverage criteria were repeatedly 
evaluated. The final motifs obtained after these steps were called 
as the anchoring seeds, which satisfied the two criteria: ≥75% 
abundance (P <0.01) in the peak data and ≥70% identity. Most 
enriched ones among them were called the primes. They were 
used as the anchors to derive the flanking region contexts for the 
datasets creation. The process was done for both the strands. This 
motif discovery approach has been introduced by us previously 
[37], while further details are given in the Supplementary Infor-
mation Materials and Methods section. 

Dataset creation 
To generate positive datasets, peak data sequences were trans-
formed into instances once the motifs were anchored for each 
TF in the provided peaks data. ±75 bases in both directions from 
the ends of the prime motif regions were taken to produce the 
instances. 

To form the negative datasets, regions reflected in the peak 
data were removed, leaving only unrepresented regions for selec-
tion. These regions were scanned for prime and reverse comple-
mentary motifs similar to the positive instances, flanked by 75 
bases for context [38]. Positive and negative instances were pooled 
at a 1:1 ratio, without overlap. 

Datasets “A” and “B” comprised positive instances derived from 
ChIP-seq and DAP-seq experiments, respectively, on A. thaliana 
TFs. Dataset “C” leveraged DAP-seq data for 387 TFs from the Plant 
Cistrome Database [17, 21]. To develop universal models capturing 
TF-DNA interactions, Datasets “D” and “E” further incorporated 
the 3D structures of the corresponding TFs from AlphaFold2 [39]. 
Dataset “E”, with 325 Arabidopsis TFs, was used for training and 
evaluation. An independent test Dataset “F” was curated to assess 
cross-species generalization, comprising 117 TFs from Z. mays 
(93) and Oryza sativa (24) with over 2.2 million ChIP-seq peaks 
from public data repositories [40]. For all the datasets, every 
possible overlap and redundancies (full or partial) were screened 
out. Further details on dataset construction are provided in the 
Supplementary Information Materials and Methods section and 
Fig. 2. 

Word representations and tokenization for 
sequence data 
Utilizing a four-bases DNA alphabet yielded 16 unique 2-mer 
words, 1024 unique 5-mer words, and 16 384 unique 7-mer words. 
Dinucleotides, pentamers, and heptamers encode composition, 
base stacking, shape, and regional motif information [22, 37, 41]. 
The resulting word representations were tokenized by assigning 
a distinct integer to each unique word, creating an input vector 
of 469 tokenized words. These numeric token embeddings served 
as the inputs to the Transformer encoder part. The TensorFlow 
(Keras) tokenizer class was employed to implement the tokeniza-
tion procedure. 

Implementation of the transformers 
Each tokenized sequence was converted into a 2D word embed-
ding matrix, with rows determined by the encoding vector

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/4/bbae324/7714599 by Institute O

f H
im

alayan Bioresources Tech. (Ihbt) user on 26 M
ay 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae324#supplementary-data


PTFSpot: a universal approach for TFBRs identification in plants | 5

Figure 2. Flowchart representation of dataset formation. (a) The protocol followed for dataset “A” creation, (b) Dataset “B” creation, (c) Dataset “C” creation, 
(d) Dataset “D” creation, (E) Dataset “E” creation, and (f) Dataset “F” creation. The datasets “A” and “B” contained the positive instances originating from 
ChIP-seq and DAP-seq, respectively, with sources PlantPAN3.0 and Plant Cistrome databases, respectively. The negative part of the datasets was formed 
by considering those genomic regions that display the regions similar to the prime motifs found enriched in DAP/ChIP-seq TF binding data but never 
appeared in the DAP/ChIP-seq data. Dataset ‘C’ also contained the positive instances from the Plant Cistrome database, but for negative instances it 
contains random genomic regions. Most of the existing tools have used this dataset and its subsets. The datasets “D” and “E” were created from the 
datasets “A” and “B,” respectively, while adding up the TF structural data also. Dataset “F” was constructed in order to be used completely as a test set 
to evaluate the universal model and its applicability in cross-species manner. This dataset covered 117 TFs from Z. mays (93 TF) and O. sativa (24 TF). 

size (d = 28) and columns by the number of tokenized words 
(n). Positional encodings of dimension “d” were computed in 
parallel using sinusoidal functions [ 42] and combined with the 
word embeddings, forming the input M’ to the Transformer 
encoder. Within the multi-headed self-attention mechanism, 
the embedded sequence M’ was projected onto query (Q), key 
(K), and value (V) matrices using learnable weight matrices 
WQ ,WK,WV: 

Q = M′.WQ , K = M′.WK , V = M′.WV 

The attention scores were then computed through scaled 
dot-product attention between Q and K, followed by softmax 

normalization and multiplication with V: 

Attention (Q, K, V) = Softmax

(
QKT√

dk

)
.V 

This computes pairwise attention weights between all words, 
capturing their contextual associations. 

A multi-headed transformer featuring 14 attention heads was 
executed in parallel, with their outputs concatenated to capture 
different relational perspectives. The combined contextual rep-
resentations underwent feed-forward processing, normalization, 
dropout regularization and global average pooling, and a final 
classification layer with a sigmoid activation function for binary
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prediction of TF-binding region. The Adam optimizer [43] was  
employed for model training using binary cross-entropy loss. This 
multiheaded self-attention architecture enabled effective learn-
ing of long-range dependencies and contextual TF-DNA binding 
preferences from the tokenized, embedded DNA sequence inputs 
across 436 A. thaliana TFs. Hyperparameter optimization was con-
ducted employing Bayesian optimization. Comprehensive imple-
mentation and optimization details of the transformer system are 
given in the Supplementary Information Materials and Methods 
section. 

Structural and molecular dynamics studies 
The 3D structures of TFs were modeled using AlphaFold2 [39], 
with the top-ranked models selected for the study. ScanProsite 
(http://prosite.expas.org) confirmed the functional domain and 
amino acid residues in the active site pocket. Comparative studies 
were conducted based on protein sequence, functional domain, 
3D structure, and binding affinity. Additional details regarding the 
validation of prime motif and TF interactions through molecular 
docking [44] and simulation are given in the Supplementary Mate-
rials and Methods section. 

Transformer-DenseNet system for cross-species 
identification of the binding regions 
The TF and binding regions’ covariability was learned through a 
hybrid Transformer-DenseNet system. DenseNet is a very-high-
depth convolutional neural network (CNN)–based Deep-Learning 
architecture that learns the spatial patterns much efficiently 
than CNNs due to its higher depth and capability to keep the 
learning from previous layers afresh while effectively mitigating 
the vanishing gradient issue. 3D structure information and the 
corresponding binding region from ChIP/DAP-seq data for each 
TF were considered for its training. The DenseNet [45] part  
processes atom-wise coordinates, while the Transformer part 
processes the sequence-based input as described in the section 
Implementation of the Transformers. Normalized coordinates 
are inputted into a convolution layer with the dimensions of 
300 × 24 × 3, accommodating the TF’s amino acid positions and 
atoms. Zero-padding maintains consistent matrix dimensions 
for shorter sequences. This approach stems from an analysis of 
over 400 TFs, revealing a maximum of 24 atoms per amino acid. 
Full implementation and optimization details are provided in the 
Supplementary Materials and Methods section. 

Building the DenseNet architecture 
Each layer in DenseNet receives information from all preceding 
layers, facilitating more efficient feature learning. The DenseNet 
model employed in our study consists of one convolution layer 
with 32 filters (kernel size = 3), followed by batch normalization 
and 2D maxpooling (stride = 2). It comprises 10 dense blocks and 
nine transition layers, totaling 121 layers. 

Within each dense block, the input Xl is concatenated with the 
feature maps of all preceding layers, denoted as (mo, m1, . . . , ml-1). 
Each layer within the dense block consists of batch normaliza-
tion, ReLU activation, and 3 × 3 convolution. Transition layers 
facilitate down-sampling and include batch normalization, 3 × 3 
convolution, maxpooling2D, batch normalization, another 3 × 3 
convolution, and a dropout layer. The growth rate “k” determines 
the number of feature maps contributed to the global state. 

After down-sampling, the output is flattened and concate-
nated with the transformer output for classification. This con-
catenated output undergoes batch normalization, dropout, dense, 

and dropout layers before passing through a sigmoid activation-
based single-node classification layer. We utilized the ‘Adam’ 
optimizer for weight adjustment, with a batch size of 64 and six 
epochs. Further details of this module are provided in Fig. 3. 

Performance assessment 
According to standard practice, every dataset involved in training– 
testing was divided into train (70%) and test datasets (30%). The 
developed Transformer-DenseNet model was tested on the 30% 
intact and completely untouched test portion. Four categories 
of performance confusion matrix, namely, true positives (TPs), 
false negatives (FNs), false positives (FPs), and true negatives 
(TNs), were evaluated. The performance of the built Transformer-
DenseNet model was evaluated using performance metrics such 
as sensitivity, specificity, accuracy, F1 score, and Mathews correla-
tion coefficient (MCC) [46]. 

Performance measures were done using the following equa-
tions: 

Sensitivity(Sn) = 
TP 

(TP + FN) 

Specificity(Sp) = 
TN 

(TN + FP) 

Acc = TN + TP 
(TN + TP + FN + FP) 

F1 − Score = 2 ×
(

Pr ecision × Re call 
Pr ecision + Re call

)

MCC =
(

TN × TP − FN × FP√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

)

where: 
TP = true positives, TN = true negatives, FP = false positives, 

FN = false negatives, Acc = accuracy. 
A test was also conducted to determine if there was any sig-

nificant over-fitting occurring in the Transformer-DenseNet final 
model. The gold-standard method for detecting such over-fitting 
is through 10 times independent random training and testing 
trials, which compares the mean absolute error (MAE) between 
the training and testing performances. Each time, the dataset 
was randomly split in the ratio of 90:10, with the first part used 
for training and the second one for testing. Each time, a new 
model was built from scratch and evaluated on the corresponding 
test set. In addition, it was made sure that there was no overlap 
between any of the train and test sets to prevent any bias and 
memory. This care has been taken for all the datasets taken in 
the present study. 

Full methods details are provided in the Supplementary Mate-
rials and Methods section. We strongly recommend readers to 
refer to that for a comprehensive understanding of the method-
ological details employed in this study. 

Results and discussion 
Learning on cumulative contextual information 
surrounding the anchoring prime motif helps 
identify transcription factor–binding regions with 
high accuracy 
The prime motif discovery (detailed methods and results about 
which are given in the Supplementary Information Results sec-
tion) helped in selecting the more appropriate contextual infor-
mation and features. The motifs may occur significantly enriched 
in the binding data, but by no means they are limited there 
only; they also appear in the nonbinding regions. The discovered 
motifs above worked as the point to zero upon to consider the
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Figure 3. Implementation of the PTFSpot Deep Co-learning system using Transformers and DenseNet to identify TFBR across plant genomes. The first 
part is a 14 heads attention transformers which learn from the dimeric, pentameric, and heptameric word representations of any given sequence 
arising from anchoring prime motif’s context. In the parallel, the bound TF’s structure is learned by the DenseNet. Learning by both partners are 
joined finally together, which is passed on to the final fully connected layers to generate the probability score for existence of a binding region in the 
considered sequence. 

potentially significant interaction spots across the DNA. Thus, 
it was imperative to assess their context and its contribution. 
Therefore, 75 bases-flanking regions from both the ends of the 

motif were considered. Previously, it was found that such extent 
of the flanking regions around the potential interaction sites 
in nucleic acids captures the local environment contributory 
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information effectively [37, 38, 47–50]. Also, such regions were 
found important in determining the stationing of TFs through 
a localized search for right points to halt at [25]. The contex-
tual information may come in the form of other co-occurring 
motifs, sequence and position-specific information, and struc-
tural/shape information that could work as strong discriminators 
against the negative and positive instances for TF binding. Con-
sidering the flanking regions around the motifs, three different 
datasets were constructed: Datasets “A,” “B,” and “C,” as described 
in the Materials and Methods and related supplementary section. 
Figure 2 illustrates how these datasets were built. 

For building the models for 436 TFs and their binding prefer-
ences, 10 different combinations of various sequence representa-
tions were used. An assessment was made for each representation 
considered where the Dataset “A” was split into 70:30 ratio to 
form the train and test sets. This protocol worked as the ablation 
analysis to evaluate how each of these representations of the 
sequence was contributing toward the discrimination between 
the preferred binding and nonpreferred binding regions through 
the transformer encoders (Fig. 4a). The observed accuracy for 
dimeric representation was just 80.78% on Dataset “A.” This was 
followed by introduction of pentameric and heptameric sequence 
representations that returned the accuracy values of 85.05% and 
86.23%, respectively, while covering a total of 156 and 154 words 
per sequence window, respectively. The ChIP/DAP-seq data do not 
retain strand information, and complementary strands are also 
present almost equally and in most of the cases, they too con-
tribute in the binding. Considering the anchor motif’s counterpart 
from the complementary strand for the same binding region may 
boost the discriminating power further. Therefore, both strands 
were considered. By doing so, a significant improvement by ∼5% 
was noted for each of the individual representations. Yet, as can be 
seen here, individually, all these representations displayed enough 
scope of improvement and needed information sharing with each 
other. Therefore, in the final stage, the datasets were formed 
having all the three representations of the sequences together. 
On these, the transformers learned contextually along with the 
prime motifs with much higher amount of information sharing 
across the representations. 

Combination of various representations of the sequences was 
done in a gradual manner in order to see their additive effect on 
the classification performance. These combinations of the word 
representations yielded a better result than using any single-
type word representations, as can be seen from Fig. 4b. Com-
plete details about word representations and performance can 
be found in Supplementary Table 3 Sheet 1–3. Details of the 
implementation of the optimized transformer are already given in 
the Materials and Methods and associated supplementary section 
and Fig. 4a. 

Ten-fold random trials performance concurred with the above-
observed performance level and scored in the same range 
consistently. All of them achieved high-quality Receiver Operating 
Characteristic (ROC) curves with high Area Under the Curve 
(AUC) values in the range of 0.9245–0.9561 (Dataset “A”) and 
0.9562–0.9869 (Dataset “B”) while maintaining reasonable balance 
between specificity and sensitivity (Fig. 4c; Supplementary Fig. 1; 
Supplementary Table 3 Sheet 4–5). To conduct an unbiased 
performance testing without any potential recollection of data 
instances, it was ensured that no overlap and redundancy 
existed across the data. The remarkable performance consistency 
ensured about the robustness of the raised transformer models 
and reliability of its all future results. It was evident that the 
Transformer effectively grasped both distant and nearby words 

associations, while acquiring knowledge through multiple hidden 
features. 

PTFSpot transformer models consistently 
surpassed all other compared transcription 
factor–binding region-finding tools 
A highly comprehensive series of benchmarking studies was 
performed, where initially two different datasets, “B” and “C,” were 
used to evaluate the performance of the transformer models of 
PTFSpot with respect to nine different tools, representing most 
recent and different approaches of TFBR detection: AgentBind 
(DanQ, LSTM based), AgentBind (DeepSea, CNN based), k-mer 
grammar, Wimtrap, SeqConv, TSPTFBS, TSPTFBS 2.0, DNABERT, 
and PlantBind. The performance measure on the test set of 
Dataset “B” gave an idea how the compared algorithms in their 
existing form perform. The third dataset “C” was also used to carry 
out an objective comparative benchmarking, where each of the 
compared software was trained as well tested across a common 
dataset in order to fathom exactly how their learning algorithms 
differed in their comparative performance. 

All these seven tools were trained and tested across Datasets 
“B” where PTFSpot-Transformers outperformed almost all of 
them, for all the performance metrics considered (Fig. 4d). 
TSPTFBS 2.0 came very close to the performance of PTFSpot-
Transformers with an average accuracy of 96.02% and MCC of 
0.9185 (PTFSpot-Transformers average accuracy: 95.98%, average 
MCC: 0.9231). On the same Dataset ‘B’, the next-best-performing 
tool was AgentBind-DanQ (Avg accuracy: 87.77% and MCC: 
0.7807), a very distant one in performance. 

On Dataset “C,” PTFSpot transformers outperformed all the 
compared tools with significant margin with a similar level 
of performance (Fig. 4f). PTFSpot transformers consistently 
demonstrated minimal variance in its performance, maintaining 
a strong balance in accurately identifying both positive and 
negative instances. This was evident through its high values 
across all the three performance metrics with least dispersion, 
affirming the algorithm’s robustness (Fig. 4e and g). The full 
details and data for this benchmarking study are given in 
Supplementary Table 3 Sheet 6–7. 

The transcription factors vary across species and 
so do their binding regions’ preferences 
One of the major calamities plant science has faced while exactly 
following the studies on humans is approaching TFs and DNA 
interactions in the similar fashion while overtly assuming binding 
sites conservation [31]. This is why in order to find TFs and their 
binding sites, Arabidopsis and TF-specific models have been ram-
pantly used, ending up with largely misleading results. All of them 
assume that the TFs and their binding preferences remain static 
and give no weight age to their co-variability. While in actual, the 
TFs and their binding regions vary across the plant species [29, 30, 
32]. As the TF structure changes, the binding sites also changes, 
and so does the preferred binding regions. Therefore, what works 
for one species, does not work for another until co-variability 
between TFs and their binding preferences is learned. And this 
is why most of the existing tools fail to work in cross-species 
manner, making them almost of no use. A study was done here to 
verify the same. Peak data of the common TFs were selected in A. 
thaliana and Z. mays i.e., LHY1, MYB56, MYB62, MYB81, MYB88, and 
WRKY25. For both the species their corresponding prime motifs 
for the same TF were compared. It was observed that for the 
same TF different prime binding motifs existed. On comparing the
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Figure 4. (a) Transformer-only model’s implementation details. This part utilizes DNA sequences–based information in terms of 7-mer, 5-mers, and 
dimeric words while basing around (+ −75 bp) the prime motif to detect the contextual information. (b) Ablation analysis for three main properties for 
discriminating between the negative and positive instances. These word representations appeared highly additive and complementary to each other 
as the performance increased substantially as they were combined together. (c) Ten-fold independent training–testing random trials on Dataset “B” 
depicts consistent performance of PTFSpot transformers. (d) Objective comparative benchmarking result on Dataset “B.” These datasets contained the 
TF originating from DAP-seq from the Plant Cistrome database. Here, all the compared tools were train and tested on the Dataset “B.” (e) Performance 
dispersion plot on Dataset “B.” PTFSpot transformers consistently demonstrated minimal variance and distribution in its performance, maintaining a  
strong balance in identifying both positive and negative instances with a high level of precision. (f) Objective comparative benchmarking on Dataset 
“C.” Here, all the compared tools were first trained and then tested Dataset “C” and evaluated for their performance. This gave a clear view on the 
performance of each of the compared algorithms. (g) Performance dispersion plot on Dataset “C.” PTFSpot transformers consistently demonstrated high 
values across all the three performance metrics with least dispersion, affirming the algorithm’s robustness. From the plots, it is clearly visible that for 
all these datasets and associated benchmarkings, PTFSpot consistently and significantly outperformed the compared tools for all the compared metrics 
(MCC values were converted to percentage representation for scaling purpose). 
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same TF’s sequences and structures between the two species the 
following was observed: 

1) The amino acid sequence identity for each TF was reasonably 
low between the two species, with lowest going up to 39% (LHY1). 
The amino acids sequence-based comparative details of each TF 
are given in Supplementary Table 3 Sheet 8. 

2) The binding domain class of the compared TFs across the 
species were same but their amino acid compositions were dif-
ferent. For example, in the case of MYB88, both species contained 
two Helix-turn-helix (HTH) DNA-binding domain, but an identity 
of only 33.3% was observed for the first domain and an identity 
of 43.2% was noted for the second domain when comparing both 
species (Fig. 5bI & II). 

3) The 3D structures of the same TF between the two species 
were compared and the Root Mean Square Deviation (RMSD) 
difference between them was found above 0.6 Å (Fig. 5) [51]. This 
strongly suggested that the same TF varies significantly in its 3D 
structure when one goes across the various plant species. The 
superimposed structures for WRKY25 and MYB88 are given in 
Fig. 5aIII and IV, respectively. The details of 3D structure compar-
ison of other TFs is given in Supplementary Fig. 2. 

4) A TF’s binding affinity was higher to the prime motif within 
the same species than other species. As in Fig. 5, taking the case of 
MYB 88, it was observed that when the TF of A. thaliana was docked 
with its own prime motif, the binding affinity was −66.45 kcal/-
mol. However, when the A. thaliana MYB88 was docked with the 
prime motif for MYB88 of Z. mays, the binding affinity went 
much lower with −46.70 kcal/mol (Fig. 5bIII & IV). The same 
procedure was applied for Z. mays MYB88 for its binding to its 
own prime motif and that of A. thaliana, and a similar pattern 
was observed there also (Fig. 5bV & VI), clearly underlining that 
there is cross-species variability in TF binding preferences that is 
grossly neglected and leading to wrong study designs. 

These important findings formed the foundation for the final 
form of PTFSpot as a universal TF-DNA interaction modeler that 
could work across any plant species and for even unseen TFs, 
while parallelly learning upon the structural variations and cor-
responding changes in binding region partner. 

Deep co-learning on transcription factor 
sequence, structure, and corresponding 
DNA-binding regions brings impeccably accurate 
universal model of transcription factor-DNA 
interaction spots 
During the real-world application of cross-species identification 
of the TF-binding regions, a huge performance gap exists, far 
below the acceptable limits. Some recent reports have highlighted 
the high degree of poor performance by a majority of the existing 
software tools for TFBR discovery during the process of their 
annotations where most of them end up reporting a very high 
proportion of false positives [17, 18, 52]. Above, we have showed 
how variability in TF structure and corresponding binding regions 
happen across the plants, which none of the existing tools has 
attempted to learn. This becomes a major reason why the existing 
software pool does not work across the plant species. 

As detailed in the Materials and Methods sections about the 
architecture of PTFSpot implementation, a composite deep co-
learning system was raised using Transformers and DenseNet, 
which parallelly learned upon the TF-binding regions in DNA 
with sequence contexts and the corresponding TF’s 3D structure 
and sequence. This model was trained and tested on Dataset 
“E” training and testing components, in 70:30 split ratio with 

absolutely no overlap and all redundancies removed. This co-
learning system was trained using 41 TFs and their corresponding 
DAP-seq data. Each selected TF represented a single TF family 
and had the highest binding data available among all the TFs 
for the respective family. The performance of the raised model 
achieved an excellent accuracy of 98.3% with a balanced sensi-
tivity and specificity values of 97.56% and 99.04%, respectively 
(Fig. 6a; Supplementary Table 4 Sheet 1), almost perfectly captur-
ing the binding regions for every TF considered. The information 
sharing between the TF structure and binding region covariability 
was so strong that when the model was assessed by removing the 
structural part, the accuracy dropped drastically to just 83.6%, sig-
nificantly lower (P-value: 4.70e-24) than what was achieved above 
with co-learning on TF structure and corresponding binding data. 
The above raised model, unlike the existing ones, assumed all TFs 
falling into one hypothetical family whose structure and corre-
sponding binding regions varied from one member to another, 
and this covariability was learned to correctly identify the binding 
preferences for even those TFs on which it was not even trained. 

The next important question was that how this co-learning 
system performed when introduced to different sets of TFs that 
had not even family representations in the above mentioned 
model, which covered 41 TF families. The Dataset “D,” derived 
from Dataset “A,” had included 51 TF dataset. In the first part, 
we considered 21 TFs datasets exclusively. Each of these TFs 
represented a TF family that was never included in the training 
of the above mentioned co-learning model. Here, the co-learning 
model achieved an astonishing accuracy of 93.7% with balanced 
sensitivity and specificity values of 93.38% and 94.02%, respec-
tively (Supplementary Table 4 Sheet 2). A structural comparison-
based cluster analysis across all the 41 TFs in training and 21 TFs 
in the testing sets, both representing totally different TF family 
sets, was done. It was observed that performance observed for 
the most distant TF family in the test set was at par with the 
one with the closest distance with the members of the training 
set, and the overall performance across all the families was at 
the same level (Supplementary Fig. 3). Separate 10-fold training– 
testing runs were made to measure the performance consistency 
where all the runs scored at the similar level consistently. Also, the 
MAE for training was found to be 0.0348, while for testing. it was 
0.0362, resulting in a very small difference of only 0.0014. A t-test 
comparing the MAE values for the training and test sets yielded a 
highly insignificant result of ∼45%, much above the significance 
threshold of 5% or lower, further confirming the absence of any 
possibility of any significant over-fitting (Supplementary Table 2 
Sheet 2). This all concurred again that the model truly learned 
the covariability between TF structure and its binding preferences 
with remarkable consistency and robustness. 

Afterward, we tested this model on the whole Dataset “D” 
where the total number of different TFs was 51. The average 
accuracy remained in the same range (93.6%) with very balanced 
sensitivity and specificity values of 93.2% and 94%, respectively 
(Fig. 6a; Supplementary Table 4 Sheet 2). 

The application value of any such software is mainly when 
it is applicable universally, across various TFs (which PTFSpot 
qualified above) as well as across different species, more so when 
very frequently sequenced genomes of various plants are being 
released, which essentially require TFBR annotations. Almost all 
of the existing software fail there. 

The raised model’s last assessment was set to determine how 
well it performed to identify cross-species TF-binding regions. For 
this task, a new dataset, Dataset “F,” was employed completely 
as another test set. This dataset contained 117 TFs from Z. mays
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Figure 5. Covariation in the structure of the transcription factor and the corresponding binding site across various species. (a) TF structure and its binding 
motif comparison across the species, (aI) prime binding motif of WRKY25 TF (A. thaliana) and its 3D structure, (aII) prime binding motif of WRKY25 TF 
(Z. mays) and its 3D structure, (aIII) superimposed TF structures of A. thaliana and Z. mays, with the structural differences measured in RMSD value. 
(aIV) prime binding motif of MYB88 TF (A. thaliana) and its 3D structure, (aV) prime binding motif for WRKY25 TF (Z. mays) and its 3D structure, (aVI) 
superimposed TF structures for A. thaliana and Z. mays, and corresponding structural difference in RMSD value. (b) Domain-based comparison between 
A. thaliana and Z. mays for MYB88, (bI) A. thaliana’s MYB88 has two domains. The first domain and its corresponding amino acids sequence are in gray 
color. The second domain and its corresponding amino acids sequence is shown in the tan color, (bII) Z. mays MYB88 too has two domains. The first 
domain and its corresponding amino acids sequence are in purple color. The second domain and its corresponding amino acids sequence is shown 
in maroon color (bIII and bVI); the docking analysis shows the stability of the complexes when a TF was docked to its binding motif within the same 
species and to the one from another species for the same TF. It is clearly evident that the same binding motif don’t work across the species and it varies 
with species as well as the structure of the TF. 
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Figure 6. Performance and benchmarking of the universal model of PTFSpot. PTFSpot universal model was raised from 41 different TFs representing 
41 different families, from A. thaliana. (i) (a) The performance over the same 41 TF’s test set (Dataset “E”). (b) The performance over the remaining TFs 
as test set from Dataset “E.” (c) The complete dataset “D” (containing ChIP-seq TFs) worked as another test set. Performance on all of them was in the 
same range with exceptional accuracy. (ii) Comparative benchmarking for the TFs whose models were available commonly among the compared tools. 
PTFSpot universal model outperformed them with huge leap for each TF. (iii) Comparative benchmarking for the 13 wheat TFs (371 066 peak regions, 
equal number of negative instances following the same protocol as dataset “F”) whose models were available in TSPTFBS2.0 for comparison. PTFSpot 
universal model outperformed TSPTFBS2.0 for every compared TF by huge margins (P-value: 1.46e-05; Kruskal–Wallis test). Reason to select TSPTFBS2.0 
for this comparison was that among the existing software tools, TSPTFBS2.0 was found as the best performer. (iv) PTFSpot universal model was raised 
using A. thaliana TFs. It was tested in trans-species manner across rice and maize. For both, it returned outstanding results, reinforcing itself as the 
solution for reliable cross-species discovery of TFBRs. 

(93 TFs) and O. sativa (24 TFs), retrieved from GSE137972 (217 
samples), GSE102920 (6 samples), and ChIP-Hub with over 60 con-
ditions. It was created solely for cross-species validation purpose 
for the model’s performance. In this study, we included the most 
recent and advanced tools like k-mer grammar, TSPTFBS, TSPTFBS 
2.0, SeqConv, and Wimtrap for comparative benchmarking here. 
We also included a novel approach, AgentBind, based on context 
learning from the flanking regions, which utilizes CNN/LSTM to 
learn from the sequence patterns [ 15]. We looked for common 
TFs among different plant species to benchmark these tools for 
cross-species performance. In Dataset “F,” only six TFs from Z. 
mays (LHY1, MYB56, MYB62, MYB81, MYB88, WRKY25) were found 
for common ones that the existing software tools had any model 
developed for (Supplementary Table 4 Sheet 3). Thus, the com-
parative benchmarking was possible for only these six TFs for 
cross-species performance evaluation of the tools. For AgentBind, 
models for these TFs were raised using TF-specific data used for 
PTFSpot while using AgentBind’s protocol. 

Two levels of benchmarking was performed. In the first level, 
seven tools, DNABERT, k-mer grammar, TSPTFBS, TSPTFBS 2.0, 
SeqConv, AgentBind, and Wimtrap, were considered and the six 
common TFs data were taken for evaluation along with the 
PTFSpot universal model. The PTFSpot universal model achieved 

an outstanding average accuracy of 92.9% ranging from 91.76% 
to 94.9%, clearly underlining its capability to accurately identify 
TFBR in cross-species manner. The performance observed for all 
the other tools was extremely poor, with none surpassing an 
average accuracy value of 60% (Fig. 6b; Supplementary Table 4 
Sheet 3), reiterating the fact that none of the existing tools are 
suitable for any practical application like cross-species TFBR iden-
tification and genomic annotations. PTFSpot has emerged as a 
breakthrough solution to this situation. 

An additional benchmarking exercise was done where TSPTFBS 
2.0 performance was compared with PTFSpot for the DAP-seq 
binding data for 13 TFs (371 066 peak regions, equal number of 
negative instances following the same protocol as dataset “F”) 
from wheat [53]. These TFs were selected only because TSPTFBS 
2.0 had models for only these TFs. TFPTFBS 2.0 was selected 
here because it was found as the best-performing one among 
the existing pool of software. For this comparison also, PTFSpot 
significantly outperformed TSPTFBS 2.0 (P-value: 1.46e-05) with 
30% performance lead over TSPTFBS 2.0 in terms of accuracy 
(31% lead in MCC) while attaining 91.48.% accuracy (84.43% MCC), 
clearly reiterating its impeccable performance in plant TF-binding 
region discovery without any bounding to TF and species-specific 
models, which none of the existing tools has attained so far.
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In the next step, the above analysis was carried forward for 
the entire Dataset “F,” which covered data for 117 TFs from rice 
and maize. Here also, PTFSpot performed outstanding while 
attaining 93.58% average accuracy, an MCC value of 0.87, and 
an F1-score of 93.56%. Figure 6d provides further performance 
distribution illustration of PTFSpot for O. sativa and Z. mays TFs 
(Supplementary Table 4 Sheet 4). All these series of validation 
and benchmarking studies proved that PTFSpot achieved a never-
seen-before success in consistently and accurately identifying the 
binding sites for various families of TF as well as across species 
due to its successful co-learning of the variability in structure and 
binding regions. 

To give a short glimpse of the kind of impact PTFSpot could 
have due to its capabilities to detect covariability between TF 
structure and its binding preferences, we extended our above-
described case of MYB88 example. MYB88 is reported to influence 
PIN7 gene involved in auxin efflux and transport associated with 
plant development [54] by binding at five locations in the pro-
moter of PIN7. When TSPTFBS2.0 was run to detect the same in A. 
thaliana, it could not report any binding site for MYB88. However, 
PTFSpot detected all of them there. The homologous gene for PIN7 
in Maize is zmPIN1c [55] whose promoter was also scanned for 
MYB88 binding. This gene displays ∼60% identity between Maize 
and A. thaliana, and exhibits a remarkable variability despite 
retaining its function. As already showed in the section above, 
even the structure of MYB88 has drifted a lot from Arabidopsis 
to Maize. When the Arabidopsis-specific Transformer-only PTFSpot 
model of MYB88 was run to scan for its binding regions in the pro-
moter of zmPIN1c in maize, nothing was found. TSPTFBS2.0 also 
reported nothing for MYB88 there. However, when the universal 
model–based PTFSpot was run, it detected two binding locations 
for MYB88 there. To validate any possible regulatory role of MYB88 
in transcriptional regulation of zmPIN1c in maize, we performed 
gene expression correlation analysis between them, utilizing data 
from nine experimental conditions available at Maize Expression 
Atlas database (European Bioinformatics Institute: [https://www. 
ebi.ac.uk/gxa/home]. Remarkably, a very strong Pearson corre-
lation coefficient of 0.97 was observed, indicating a very high 
possibility of regulation of zmPIN1c by MYB88 in maize. Further 
details of this analysis are presented in Supplementary Tables 5 
and 6. This small demonstration highlights the kind of deep 
impact PTFSpot may have in unraveling the regulatory systems 
of plants while breaking several age long bottlenecks. 

Conclusion 
The present work brings a revolutionary new approach, PTFSpot, 
which learns from the covariability between binding protein 
structure and its binding regions without requiring to be specific 
for any particular TF or its family-specific model. It can accurately 
identify the binding regions for any given TF belonging to any 
family across any plant genome, and can work for even any novel 
and never-reported-before TFs and genomes with the same level 
of accuracy. With this, the present work is expected to drastically 
change the scenario of plant regulatory research as well as may 
cause extensive cutting of cost incurred on experiments to detect 
TF-binding regions across a genome. 

Key Points 
• Plant genomes are highly variable, which is transferred 

to all of its component elements, including transcription 

factors (TFs) and their binding region (TFBR) preferences. 
Despite that, this fact has been grossly ignored and incor-
rect practice of using TF:DNA interaction models for one 
species to another is dominant, creating misleading and 
incorrect reports and findings. 

• None of the existing software tools to detect TFBRs 
in plants is equipped to understand and capture this 
variability. This is why most of them fail to perform 
well during cross-species applications and perform well 
only for those species and TFs for which they have spe-
cific models built, making them hardly of any practical 
value like annotation TFBRs for newly sequenced plant 
genomes. 

• For the first time here, relationship between a TF’s 
sequence and structure variability and its binding region 
preferences has been learned through a Transformer-
DenseNet Deep-Learning system, delivering a single uni-
versal model of TF:DNA interactions that can work for 
any TF and any plant species, seen or unseen, with 
equal performance. This has liberated the TF regulatory 
research in plants from the abovementioned bottlenecks 
and makes it feasible to detect TFBRs with utmost accu-
racy and reliability for any TF and any plant genome. 

• The developed tool, PTFSpot, has been tested across a 
huge volume of experimental data where it breached 
the accuracy of 98% and always scored >90% in every 
validation test, while maintaining an average lead of 
>30% on the compared tools. In cross-species tests done 
on rice, wheat, and maize, where none of the existing 
software were found able to attain even 60% average 
accuracy, PTFSpot attained consistently >90% accuracy 
values for completely unseen-before TFs and genomes. 

• PTFSpot is expected to revolutionize the plant TF regu-
latory research as it will empower to mimic costly high-
throughput experiments like DAP-seq with its highly 
accurate TFBR identification for any TF and plant 
genome, known or novel. This philosophy can also be 
extended to animal systems as well as other interaction 
studies. 

Supplementary data 
Supplementary data are available online at Briefings in Bioinformat-
ics online. 
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