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Abstract
Genome architecture in eukaryotes exhibits a high degree of complexity. Amidst the numerous intricacies, the existence of
genes as non-continuous stretches composed of exons and introns has garnered significant attention and curiosity among
researchers. Accurate identification of exon-intron boundary junctions is crucial to decipher the molecular biology
governing gene expression of regular and aberrant splicing. The currently employed frameworks for genomic signals, which
aim to identify exons and introns within a genomic segment, need to be revised primarily due to the lack of a robust
consensus sequence and the limitations posed by the training on available experimental data sets. To tackle these
challenges and capitalize on the understanding that deoxyribonucleic acid (DNA) exhibits function-dependent local
structural and energetic variations, we present ChemEXIN, an innovative method for predicting exon-intron boundaries. The
method utilizes a deep-learning (DL) model alongside tri- and tetra-nucleotide-based structural and energy parameters.
ChemEXIN surpasses current methods in accuracy and reliability. Our work represents a significant advancement in exon-
intron boundary annotations, with potential implications for understanding gene expression, regulation, and biomedical
research.

Introduction
In the heterogenous world of genomics, eukaryotes stand apart from prokaryotes with a fascinating twist – their genetic
blueprints exhibit remarkable complexity1. Amongst various captivating elements in eukaryotic DNA, the intriguing exon-
intron boundary regions have ignited a blazing spark of interest among researchers.

A gene in eukaryotes is a discontinuous structure composed of a protein-coding region (exon) and a non-coding stretch
(intron)2. During the process of gene expression, the introns are excised from a pre-messenger ribonucleic acid (pre-mRNA)
after transcription, and the exons are joined together through splicing in various combinations to form mature mRNA
products3. These exon-intron boundary sites are vital for determining the encoded amino acid sequence and for regulating
splicing events. These boundaries hold significant medical importance, as many human genetic disorders and diseases
result from irregular pre-mRNA splicing4. Thus, the demarcation of accurate exon-intron architecture is crucial in eukaryotic
genome annotation.

In pursuit of annotating these sites, several attempts have been made in genomics. In the early stages of exploration,
researchers relied upon the consensus sequence-based approach5,6. Scrutinizing the sequences, character by character,
and complementing the findings with the experimental data provided with the initial patterns for their identification. These
signals, generally known as splice site (SS) motifs, occur in nucleotide pairs with GT and AG at the 5’ and 3’ ends of the
intron, respectively7,8. However, at later stages, the emergence of cryptic SSs within all the genes of a particular eukaryotic
species and other organisms yielded several diverse consensus stretches9,10. The situation is even more complex due to
the prevalence of alternative splicing (AS) in eukaryotes. An individual gene can give rise to multiple mRNA isoforms
through AS by selectively including or excluding different exons, creating an array of potential protein products11. This
remarkable phenomenon adds another layer of complexity to the identification of exon-intron boundaries, as the traditional
linear gene model no longer suffices.

Researchers have recognized the need for a more comprehensive and reliable approach. Various computational
approaches have long been used to annotate these evasive boundaries. Specific tools leverage scoring matrices holding
valuable sequence pattern information from experimentally verified SSs by identifying conserved nucleotide positions and
their frequencies12,13,14,15. Approaches like Genscan16 and GenomeScan17 incorporate additional information from known
protein sequences to enhance their predictive power. Advanced algorithms, such as GeneWise18, Augustus19, Fgenesh20,

GeneParser21, and geneid22 are built using dynamic programming models employing a data-driven approach to learn the
sequence patterns associated with various genomic elements. Spliceator23, a recent innovative approach to splice site
prediction, harnesses the power of convolutional neural network (CNN) for its predictive capabilities. The key strength of



Page 3/19

Spliceator lies in its training process, which uses validated data from a diverse set of over 100 organisms. While these
methods demonstrate substantial predictive capabilities, their effectiveness relies heavily on the availability of extensive
sequence data, resulting in variable performance from species to species.

In addition to the aforementioned methods, ribonucleic acid (RNA) based tools offer reliable predictions for organisms with
or without a reference genome. Unfortunately, these tools, too, fall short when it comes to annotating splice junctions in
DNA sequences24,25,26,27,28. Recent exploration of chromatin organization and nucleosome positioning approach presents a
fresh perspective29. It has yet to achieve the desired level of sensitivity and specificity. Although valuable insights have
been gathered from these studies over the years, it remains clear that novel ideas and newer models are essential for
accurately identifying exon-intron boundaries in genome sequences.

It is widely recognized that DNA within our body exhibits sequence and more importantly function-specific local structural
and energetic variations30,31,32,33,34,35,36,37,38. These arrangements are necessary to facilitate several biological processes,
such as protein interactions, gene expressions, etc.39. Investigations on nucleic acid structures have yielded fresh insights
into genome architecture, providing researchers with a new perspective on annotation. Consistent findings from studies
demonstrate that similar DNA sequences often share similar biophysical properties. Interestingly, however, it is not always
the case that alternative sequences can produce DNA molecules that possess similar structures and energy properties40,41.
This intriguing phenomenon highlights the complex relationship between DNA sequences and their resulting
physicochemical properties.

Working with these physicochemical properties, our past research has highlighted the significance of biophysical profiling
in the characterization and annotation of DNA elements8,42,43,44,45,46,47,48,49,50. These findings reveal that the
physicochemical signatures of genomic elements are unique and conserved despite sequence variations at these sites. In
line with this trend, exon-intron boundaries also display distinctive structural and energy profiles, distinguishing them from
other genomic regions48. Advancing our exploration into eukaryotic genome annotation, we present a novel approach,
ChemEXIN, which utilizes structural and energy characteristics of DNA to identify exon-intron boundaries. This method
capitalizes on Molecular dynamic (MD) based biophysical features encompassing the Backbone, Base pair (BP) axis
organization, Inter-BP organization, Intra-BP organization, and energetics of DNA to discern the precise exon-intron
boundary junctions.

ChemEXIN has undergone dedicated training and development on all exon-intron boundary junctions from the protein-
coding genes in Homo sapiens (H. sapiens), Mus musculus (M. musculus), and Caenorhabditis elegans (C. elegans). It is
openly accessible on GitHub and has been extensively optimized using comprehensive datasets involving rigorous
comparisons vis a vis various classification models. Further, comparing it against widely adopted sequence-based
methods using exhaustive datasets complements its versatility. These findings underscore the robustness and broad
applicability of ChemEXIN in accurately predicting exon-intron boundaries across both protein-coding and non-coding
genes. This comprehensive performance not only validates the effectiveness of our approach but also positions it as a
significant contributor to the progression of eukaryotic gene annotation methodologies.

Results

1) Physicochemical profiles at the exon-intron boundaries
Figure 1A-1E, Figure S1, and Figure S2 (Supplementary File 4) depict the numerical profiles of all 28 parameters, including
the nine Backbone angle parameters, six Inter-BP parameters, six Intra-BP parameters, four BP-axis parameters, and three
energy parameters. These profiles were generated for coding sequences (CDS), exon-start (ES), and exon-end (EE)
sequences in H. sapiens. The results of this study indicate that the physicochemical profiles linked to each parameter in the
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five main categories for both ES and EE sequences display unique patterns, which differ significantly from those observed
in CDSs. The results demonstrate that while the structural and energy properties of the CDS remain

relatively constant throughout the sequences, a distinct shift occurs in the biophysical profiles at the exon-intron boundary
within sequences harboring them. The structural trends observed at the exon-intron sites in Fig. 1A-1D, for each parameter,
emphasize the presence of a transient thermodynamically unstable boundary. This boundary is crucial for facilitating
classical splicing events, with exons demonstrating higher stability than neighboring intronic sites51,52. Additionally, the
energy plots in Fig. 1E, at the exon-intron junctions within these DNA sequences, support the classical hypothesis that
boundary elements play a crucial role in secondary structure formation in RNA, thereby facilitating splicing. The Hydrogen
bond energy exhibited a rapid rise followed by a drop, implying an initial instability at the boundary position that gradually
balances out as the junction site progresses. In contrast, the Stacking energy reached its maximum value at the border
junction, leading to an increased flexibility in the DNA by reducing its stiffness. The observed decreased Solvation energy
could indicate the transiently formed stable structure at the interfaces between exons and introns.

Moving further with the idea that the combined effect of smaller features brings about a concerted change, we combined
the individual structural parameters belonging to the respective major categories to provide us with the actual Backbone,
Inter-BP, Intra-BP, and BP-axis profiles. The synergistic visualization of these categories and the three energy parameters at
the exon junctions are available in Fig. 1F. These results provide us with the evident change at the boundaries for the seven
structural and energy parameters. The trend, initially widespread over a region of 50–100 length within the individual
parameters, is now contained uniformly within a region of ~ 50 for all the categories. The shaded region within the
combined plots shows the site undergoing major structural and energy changes. Together, these individual and combined
profiles offer valuable insights into the potential utility of the combined parameters for effective exon-intron boundary
identification within any given gene sequence.

2) Correlation analyses and feature importance
A correlation analysis was conducted to examine the interrelationships among the seven final parameters within the 50-
nucleotide regions of both the ES and EE profiles in humans. The primary objective of these analyses was to assess the
degree of correlation between parameters and identify any redundancy that may exist. Figure 2 shows the correlation
results. Different pairs of parameters exhibited varying degrees of correlation, ranging from moderate to high. Some
parameters were dependent on each other, while others showed no correlation. Furthermore, an examination of feature
importance through principal component analysis (PCA) was performed to retain the significant features without
compromising on information for the downstream analysis. As summarized in Fig. 2 and Methodology S1 (Supplementary
File 2), these results emphasize the significance of using all seven parameters. The methodology, as outlined in Fig. 3, was
thus followed, leading to the development of the novel physicochemical property-based exon-intron boundary prediction
method, ChemEXIN.

Figure 2. (A) Correlation matrices depicting the relationships among the seven final parameters at exon-start and exon-end.
(B) Feature importance analysis conducted through PCA, revealing significant contributions of all seven parameters.

3) Performance evaluation
To arrive at an optimal exon-intron boundary prediction method, various Machine Learning (ML)/DL models were deployed
during the initial development phases of ChemEXIN. The performance of these models underwent comparison using both
the training-testing split dataset and the evaluation dataset in humans. Model assessment and comparison were
conducted using five key criteria: sensitivity, specificity, F1-score, precision, and accuracy. The conclusive results of the
training-testing are presented in Table S1 (Supplementary File 3). These results indicate that all the models exhibit the
capability to predict exon-intron boundary sites, with accuracy levels and F1-scores spanning from 54% when utilizing basic
models to an improved performance of ~ 80% when employing DL model on the test set. On the same dataset, it is worth
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noticing that parameters such as specificity, which examines the model’s ability to accurately detect true negatives, and
sensitivity (true positive rate or recall), which evaluates the system’s proficiency in predicting true positives within each
category or class, demonstrated notably strong performance values.

The findings from the H. Sapiens evaluation set comprising 60,000 held-out sequences further validate the efficacy of
utilizing biophysical parameters for accurately identifying boundary regions (Table S1, Supplementary File 3). Further, the
area under the receiver operating characteristic curve (AUROC) scores on the evaluation dataset presented in Fig. 4 show
that the three-dimensional CNN (3D-CNN) and Support Vector Machine (SVM) classifiers surpass other models in
predictive performance across all three classes. Notably, the 3D-CNN exhibits higher area under the curve (AUC) values
across all classes, signifying its efficacy in distinguishing between diverse classes. Following the comparison results of the
above models and the three-dimensional nature of our datasets, we decided to proceed with the 3D-CNN53 trained model
for subsequent analysis and its independent implementation in all the three organisms under study. The architecture of the
3D-CNN model employed here is detailed in Fig. 5 and Methodology S2 (Supplementary File 2).

4) Comparison with the state-of-the-art tools
Five widely used gene structure organization prediction tools —Spliceator, Fgenesh, geneid, Genscan, and Augustus, were
benchmarked against each of our three organism-specific trained models. The results are presented in Fig. 6 and Tables S3,
S4, and S5 (Supplementary File 3), with details on the outputs available in Methodology S3 (Supplementary File 2). To
ensure an unbiased comparison of our approach, we used three benchmarking datasets, each comprising 2,000 randomly
selected sequences from the respective organism. The majority of these tools are available as web servers, which tend to
crash on large input sequences and/or require input sequences in batches. Henceforth, this reasonable-sized comparison
data ensured the efficient working of all the tools.

Spliceator, available as a web server23, employs CNN in conjunction with a user-defined reliability parameter and a
sequence search window to predict the gene organization within input sequences. Instead of treating individual input
sequences separately, it processes them as a unified input string with a maximum length of approximately 200,500 bases.
To adhere to this constraint, we divided the input sequences for ES and EE for organisms under study into two batches. We
employed a default reliability parameter score of 98% and a model tailored to a 400-length search window (as our individual
input sequences are 401 nucleotides long) to predict donor and acceptor sites. The output files obtained for each batch
were combined into their respective categories and processed to provide a final confusion matrix. From the results, it is
evident that Spliceator results are less than satisfactory for all three organisms. The observed high level of
misclassification is primarily attributed to Spliceator's consensus-based approach to identifying donor and acceptor sites,
resulting in an over-representation of these sites in the predictions. This over-representation tends to increase with a
decrease in the reliability parameter score due to non-specific pattern matching. Moreover, there is no noticeable
improvement at a 100% reliability parameter score, suggesting its high sequence specificity.

Fgenesh is available both as a web server and as a local downloadable version. Due to the requirement of several genomic
feature files in processing the downloadable version, we tested our sequence with the online web server20. The method
accepts a single file as input, with each sequence represented in FASTA format. In addition to a Hidden Markov model
(HMM) based gene prediction model trained over several eukaryotic species, though not within the scope of our research, it
provides numerous user-specific advanced options. Operating it with organism-specific default parameters, the method
generated output files, which were then processed into a confusion matrix. Similar to Spliceator, Fgenesh yielded
comparable results for C. elegans and M. musculus. However, for humans, the precision and accuracy notably improved,
reaching close to 40%. Although there is a potential for improved outcomes by utilizing targeted training with specific
feature files in the downloadable version (Fgenesh++), we opted not to pursue these advanced options.

geneid, another tool in our evaluation, employs position weight arrays, scoring, and Markov models to identify gene features
in DNA sequences. Although available as a web server and a GitHub repository22, we faced challenges with the online
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version, prompting us to resort to the local version downloaded from GitHub22. Despite processing input sequences in a
manner similar to Fgenesh, the processed results more closely resemble those of Spliceator, exhibiting a high
misclassification rate ranging from 80–90% for the organisms under consideration. The misclassification observed can be
attributed to the overrepresentation of the ES and EE sites. Regardless of being trained on multiple species from all four
eukaryotic kingdoms, geneid did not yield satisfactory results in our study.

Continuing our benchmarking efforts, we evaluated Genscan, a widely used tool for identifying exon-intron structures in
genomic sequences. Genscan16 employs general probabilistic models to annotate gene features within input sequences.
While Genscan can process nearly one million bases, our dataset, comprising approximately 0.8 million bases, posed a
challenge to its processing capabilities. Hence, following a similar strategy employed with Spliceator, we partitioned the
input sequences into two batches for both the ES and EE. Regrettably, akin to the outcomes observed with the other tools,
the results were not encouraging.

Transitioning to our last tool, Augustus, our objective was to evaluate its proficiency in predicting gene structures. Beyond
being accessible as a straightforward pre-trained web server and a GitHub repository, Augustus offers an improved web
server option. This server allows training sequences not listed in their database using annotation files containing
information for complementary DNA (cDNA) sequences and/or hints for donor and acceptor sites (hint files). We utilized
the pre-trained web server19 and prepared a basic hint file (GTF) for input sequences (FASTA), adhering to the required
format. Using a generalized HMM with an additional probabilistic model for gene structure prediction, Augustus also
provides information on alternate SSs. Augustus exhibited relatively favorable performance compared to other tools,
achieving a specificity of approximately 85%, notably attributed to the utilization of a hint file. In the case of humans, the
misclassification rate decreased significantly to approximately 45%. However, while a similar trend was observed for other
organisms, the outcomes were less favorable.

In a similar manner to the above-reported comparisons, we examined how well our models performed by looking at their
predictions on the benchmarking datasets. This evaluation was essential for understanding how accurately our approach
could predict exon-intron boundaries. Our analysis unequivocally demonstrates that our approach clearly outperforms other
tools (Fig. 6) across all major evaluation criteria in all three organisms. The results indicate a notably low misclassification
rate, ranging approximately from 0.075 to 0.20, and high precision, ranging from approximately 0.796 to 0.92. These
findings indicate the reliability and accuracy of the predictions obtained through our technique. This exhaustive comparison
underscores the presence of substantial sequence alternatives. However, despite these variations, the biophysical profiles
at the junction sites remain largely conserved. This conservation suggests the potential utility of these profiles in facilitating
precise recognition and prediction by our physicochemical property-driven 3D-CNN models.

Expanding the scope of our comparison, we further assessed the performance of the reported method alongside two top-
performing tools identified in the previous benchmarking step, namely Fgenesh and Augustus. This extended comparison
focused on predicting exon-intron junctions in non-protein coding genes, including long-non-coding RNA (lncRNA) genes;
transfer RNA (tRNA) genes; and ribosomal RNA (rRNA) genes in humans.

Despite its widespread usage, Fgenesh failed to generate results in our comparative assessment. Unlike Augustus, while
our method has not undergone specific training on the exon-intron characteristics of these genes, the results documented
in Table 1 and Fig. 7 underscore a notable performance of our framework against Augustus, indicating its adaptability and
efficacy even in contexts beyond the specialized training domain. This underscores the robustness and versatility of our
approach, particularly in addressing gene prediction tasks across varied genomic contexts.

Leveraging biophysical parameters and the DL method, our approach exhibited superior performance compared to existing
gene annotation tools across the three organisms. Moving forward, we developed ChemEXIN, a consolidated prediction
framework combining the three organism-specific models. This approach holds significant potential for enhancing the
efficiency of exon-intron boundary annotation.
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5) Exon-intron boundary prediction through ChemEXIN
ChemEXIN, available as an open-source tool, can be downloaded and used within a conda environment, offering an
accessible platform for researchers. After the initial setup of the virtual environment through

cloning, users can activate and run ChemEXIN using a Python 3 interpreter via a command prompt. This process involves
providing essential inputs: a file containing the gene sequence of interest, the associated

organism, and a threshold value that defines the probability at which prediction windows are refined. Upon receiving these
inputs, ChemEXIN performs its analysis and delivers the prediction results in a comma-delimited file. For detailed
instructions on setting up and using ChemEXIN, researchers can refer to the user manual (Supplementary File 5).

To assess the performance of ChemEXIN, we tested it on random gene sequences of varying lengths from the studied
organisms, using a default probability score of 0.75. The specific outcomes of this analysis are cataloged in Table 2.
Additionally, to assess ChemEXIN's compatibility across different computing environments, we executed predictions on the
same gene set but on systems with various configurations. The results of this compatibility assessment are detailed in
Table S6 (Supplementary File 3). Collectively, these results demonstrate that ChemEXIN is highly efficient in processing
sequences of diverse lengths, a feat it accomplishes using minimal computational resources and without depending on the
Operating system (OS). A detailed examination of our prediction outcomes, particularly with human and mouse gene
sequences, reveals that a significant number of boundary sites are predicted with remarkable accuracy. Even in many
instances where predictions deviate, they do so by a margin of only five to ten nucleotides from the established boundary
windows. Notably, Despite the promising results from training-testing and benchmarking analyses, the predictions made by
the C. elegans model were not reliable and, hence, not reported. This irregularity could be attributed to inadequate training
from imbalanced positive and negative datasets. Enhancing the accuracy for C. elegans thus requires refining the filters
and extending the training process. These improvements will yield better results and broaden the applicability of ChemEXIN
across various eukaryotes, paving the way for future advancements.

Table 2
Performance evaluation of ChemEXIN on random genes from H. sapiens and M.

musculus.
Organism Gene Length (nt) Predicted Sites Average time (sec)

H. sapiens DMD 2,220,382 47 221.77

BDNF 188,307 28 24.84

NEU1 10,881 8 8.24

M. musculus RP1 409,685 26 41.30

CDK6 189,524 9 22.46

SCAF8 83,888 15 12.78

Discussion
Our study extensively examined the structural and energy profiles at exon-intron boundaries in humans through a
comprehensive analysis of 28 biophysical parameters. This investigation revealed distinct physicochemical patterns at the
exon-intron boundaries, which are markedly different from relatively stable profiles observed within CDSs. The patterns at
the exon-intron boundaries are crucial in facilitating classical splicing events and can be utilized for their recognition.
Building on this foundation, our correlation analyses and feature importance assessments highlighted the synergistic effect
of the physicochemical parameters in defining the exon-intron boundaries. By aggregating individual parameters into
broader categories, we successfully encapsulated the changes across these boundaries within a compact region of
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approximately 50 nucleotides. This methodology refined our understanding of identifying these boundaries and
underscored the potential of physicochemical properties in enhancing the annotation.

The development and subsequent evaluation of our prediction methodology commenced by integrating two additional
eukaryotic model organisms. By leveraging a blend of biophysical parameters and DL, our models notably outperformed
existing gene organization prediction tools across various evaluation metrics in all the three organisms studied. This
achievement illustrated the effectiveness of combining structural and energetic profiles with sophisticated computational
methods for boundary prediction. Further comparison with state-of-the-art tools emphasized the limitations of current
methods in accurately identifying exon-intron junctions, particularly in non-protein coding genes. Despite these challenges,
the robust performance of our methodology highlights its adaptability and potential for broader applications in gene
prediction tasks, even in contexts where traditional tools fail.

Finally, integrating the prediction models with refinement filters, we made ChemEXIN available as an open-source tool,
embodying a user-friendly interface that makes it a valuable resource for the research community. Its ability to efficiently
process diverse gene sequences, its minimal computational demands, and compatibility across different systems,
significantly enhance its utility in genomic studies. This seamless integration of comprehensive analysis, innovative
methodology, and accessible technology is pivotal in understanding and predicting exon-intron boundaries, setting a new
benchmark for future genomic research.

Undeterred by its utility in predicting exon-intron boundaries, ChemEXIN exhibits limitations that may affect its performance
and applicability in specific contexts. The first intrinsic limitation of ChemEXIN arises from the identical biophysical
characteristics at the ES and EE sites. This issue, highlighted by the structure and energy graphs in Fig. 1 and further
supported by AUROC curves in Fig. 4, makes it difficult to differentiate them. The final prediction pipeline is thus tailored to
identify boundary occurrences collectively rather than distinguishing between individual ES and EE sites. Further, due to the
absence of biophysical characters for entire genomic regions, ChemEXIN demonstrates efficacy in predicting exon-intron
boundaries within gene sequences. Its performance diminishes notably when analyzing full-length genome sequences.
Additionally, while ChemEXIN effectively considers standard splicing events, it does not account for AS variants, limiting its
ability to characterize alternate SSs. A potential solution lies in exploring boundary-like patterns occurring at non-traditional
sites within the unfiltered raw output files. However, this is outside the scope of the current investigation. Finally, despite
delivering promising results in training-testing and benchmarking steps, ChemEXIN's performance on C. elegans could have
been more optimal, highlighting the need for further investigation and refinement.

In conclusion, ChemEXIN, through biophysical parameters and 3D-CNN models, outperforms existing gene organization
prediction tools, demonstrating its adaptability and potential for broader applications in genomic research. The
identification of distinct physicochemical patterns at exon-intron boundaries highlights the importance of considering
boundary-specific characteristics for accurate prediction. ChemEXIN's integration with refinement filters enhances its
usability, offering a user-friendly platform for researchers. Regardless of certain limitations, such as difficulty in
distinguishing between ES and EE sites and reduced performance with full-length genome sequences, future efforts could
focus on refining the tool to ensure robust performance across diverse organisms. Overall, ChemEXIN represents a
significant advancement in genomic research, with implications for enhancing our understanding of gene architecture and
facilitating precise exon-intron boundary annotations.

Methods

1) Exon-intron sequence datasets
From the human genome feature files downloaded from the GENCODE54 database, we identified and filtered out ES and EE
positions from all protein-coding genes (a total of 328,368). Using the human reference genome, we generated two positive
sequence datasets around these positions for both ES and EE.
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The Dataset I consist of 401 nucleotides long 328,368 sequences. These sequences were generated through an extraction
of 200 nucleotides located both upstream and downstream of the EE, positioned at zero. Similarly, Dataset II was created
by spanning 200 nucleotides upstream and downstream of the ES. A negative control dataset consisting of 30,140
sequences, each extending 401 nucleotides, was similarly created using the CDSs. These sequences were extracted from
the middle of exons with a length greater than 1,000 nucleotides.

2) Characterization parameters
For a comprehensive structural depiction of DNA, we have considered various aspects of its organization, including the
Backbone arrangement defined by alpha, beta, gamma, delta, epsilon, zeta, chi, phase, and amplitude; Inter-BP
arrangements through shift, slide, rise, tilt, roll, and twist; Intra-BP arrangements encompassing shear, stretch, stagger,
buckle, propel, and opening; and the BP-axis, which takes into account X-displacement, Y-displacement, inclination, and tip.

In contrast to our previous studies, which relied on X-ray-derived dinucleotide data8,42,43, our current research adopts a more
comprehensive approach. We incorporate neighboring effects by analyzing the structural attributes of all distinctive tri-
nucleotides to obtain parameter values for the Backbone, Intra-BP, and BP-axis and unique tetra-nucleotide steps for the
Inter-BP arrangement parameters. The Nucleotide Database (NDB) lacks B-DNA structures encompassing all possible tri-
and tetra-nucleotide steps. Therefore, akin to our recently published study48, we rely on atomistic MD simulations as the
sole viable approach to obtain reliable and transferrable parameters for all the unique nucleotide steps. To obtain these
structural parameters, we synthetically designed 13 oligomers and followed the exact methodology outlined in our previous
work48. For the energy parameters, we relied upon our in-house lab software to calculate the values of Hydrogen bond
energy, Stacking energy, and Solvation energy over all instances of tri-nucleotide steps50.

After computing all structural and energy parameters for each oligomer, we assessed the tri- and tetra-nucleotide steps in
the 5' to 3' direction corresponding to each property. By averaging these occurrences, we generated comprehensive
parameter value tables (Supplementary File 1).

3) Exon-intron boundary junction profiling and visualization
Using the tri- and tetra-nucleotide parameter value tables, every sequence within each dataset (328,368 ES/EE sequences
and 30,140 CDS sequences) was converted to 28 numerical profiles. To avoid noise, these numerical profiles were
subjected to a sliding window of 25 base pairs. Within this window, the values were averaged, resulting in a single value for
each position. The resulting 374 and 373 long numerical profiles corresponding to the tri- and tetra-nucleotide parameters
represented the parameter trend over the sequence. Thereafter, a min-max normalization was applied over these profiles,
ensuring all values fell within a standardized range of zero to one48.

A visual representation of these profiles was achieved by creating two categories of plots for both the ES and EE
parameters. In the first category, discrete properties belonging to a main structural class were plotted directly on a single
graph and compared with the CDS profiles. In the second category, numerical profiles of the structural parameters within a
specific class were combined to generate a single curve, highlighting the synergistic effects of parameters within that
group. This approach allowed us to observe the overall trends in Backbone, BP-axis, Intra-BP, and Inter-BP organizations.
The three energy parameters represent different aspects, so they were kept separate.

4) Formulation of training datasets
For both the ES and EE sequences, the combined seven numerical profiles were processed to extract a segment of length
50, ranging from position 158 to 207. These segments, during visualization, displayed a distinctive pattern to that of the
CDS sequences and acted as target classes for our prediction models.

To incorporate contrasting features, the seven parameter profiles from the CDS sequences were generated. However, this
time, we employed a slightly different approach to capture the sequence characteristics and eliminated bias arising from a
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lower count of CDS sequences (30,140). We extracted seven non-overlapping numerical fragments, each 50 in length. This
extraction followed an organized, non-redundant approach, starting from position one and advancing in increments of 50
nucleotides (e.g., from position one to position 50, position 51 to position 100, and so forth, ultimately resulting in the final
fragment spanning from position 300 to position 350). Consequently, this method yielded a negative training dataset
comprising 210,980 CDS sequences corresponding to the seven final parameters.

5) Training Pipeline
The entire approach employed for ChemEXIN is outlined as a flowchart in Fig. 3. Before advancing to the training phase, our
analysis commenced with investigating the correlations among the final parameters. This preliminary step aimed to
elucidate the relationships and potential interdependencies between the parameters, providing valuable insights into their
collective behavior. Correlation analyses conducted on the 50-length segment for both ES and EE datasets yielded diverse
levels of correlation among different pairs of parameters. Nonetheless, these correlations were not much pronounced,
except for a few cases observed in both datasets. A feature importance analysis was performed to strengthen the
conclusions further. Consequently, for the scope of this study, all seven individual parameters were considered, and the
positive (ES/EE) and negative (CDS) datasets were integrated into a single training sequence file. To get a vigorous
prediction pipeline, instead of averaging the 50 values extracted from the numerical profiles of each parameter, all 50
values corresponding to each of the seven primary categories were treated as distinct features. This method retained the
full spectrum of information within each category and thus provided us with 350 derived features (50 numerical values
corresponding to each category) for each sequence. Advancing towards the training process, the integrated dataset
comprising ~ 850,000 sequences was categorized into three classes: 0 for CDS, 1 for ES, and 2 for EE. These sequences
were then separated into smaller datasets for extensive training-testing and evaluation. 60,000 sequences having an equal
proportion of CDS, ES, and EE were chosen randomly from their respective classes and constituted the blind evaluation
dataset. The remaining sequences, after randomization, which ensured unbiasedness, were subjected to a classical 80 − 20
split to create training-testing datasets. Various ML/DL methods were deployed over these human datasets, and the results
were compared. By employing multiple models rather than relying on a single one, we strengthened the idea that the
physicochemical profiles observed at the exon-intron boundaries play a crucial role in predictions.

Starting here, we employed a parallel methodology for two additional eukaryotes, namely M. musculus and C. elegans. This
approach involved a similar exon-intron sequence extraction and training-testing split alongside an independent extraction
of a benchmarking set. This set comprised 2,000 sequences each for ES and EE for each organism (Supplementary File 1).
Skipping the organism-specific model evaluation, the best-performing model in humans was deployed for these organisms.
Further, to maintain linearity across organisms arising from the evaluation dataset corresponding to H. sapiens, 2,000
random ES and EE sequences from this set were selected as a separate benchmarking set for humans.

6) Evaluation and comparison with the state-of-the-art
To assess our trained method, which includes models from H. sapiens, M. musculus, and C. elegans, we benchmarked it
against five widely used gene annotation tools. This state-of-the-art comparison was conducted using the organism-
specific benchmarking datasets.

Additionally, an advanced comparison between the two top-performing tools and the model was conducted using non-
protein coding gene datasets. These datasets encompass sequences devoid of prior training, thus offering a rigorous
evaluation of the efficacy and adaptability of our biophysical-based prediction approach.

7) Prediction Methodology
Moving ahead with creating a novel biophysical parameters-based exon-intron boundary prediction tool, we integrated the
three benchmarked models into an easy-to-use programmed pipeline. This OS-independent pipeline, developed entirely in
Python 3, is accessible as a command-line tool and is publicly available on GitHub. The exact methodology during a
prediction involves validating the input sequence length and characters and then converting the input sequence into seven
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numerical profiles corresponding to the combined major categories. Subsequently, a transient data frame with an
organization similar to our training-testing dataset is created at the backend. This data frame then employs the organism-
specific models and the reliability threshold value chosen by the user in addition to the sequence input step. The
predictions from the employed models pass through various filters to provide the user with the final exon-intron boundary
sites organized in an output file. The detailed prediction pipeline and all the filtering steps are available in the user manual
(Supplementary File 5). To test the working of the developed pipeline and its cross-platform functionality, predictions were
made by ChemEXIN on varying-length genes from the three organisms in consideration.
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Tables
Table 1. Comparison of methods using untrained non-protein coding H. sapiens gene (lncRNA, tRNA, and rRNA).
sequences.

[1] TP: True Positive.
[2] FP: False Positive. 
[3] TN: True Negative. 
[4] FN: False Negative. 

Table 2. Performance evaluation of ChemEXIN on random genes from H. sapiens and M. musculus.

[1] nt: Nucleotides. 
[2] Average time (sec): Average
processing time calculated over
three major OS (Windows version
10, Linux version Ubuntu 22.04,
and macOS version 14 Sonoma)
in Seconds.  
[3] DMD: Dystrophin (muscular
dystrophy, Duchenne and Becker
types).
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[4] BDNF: Brain-derived neurotrophic factor.
[5] NEU1: Neuraminidase-1.
[6] RP1: Retinitis Pigmentosa-1.
[7] CDK6: Cyclin-dependent kinase-6.
[8] SCAF8: SR-related CTD associated factor-8.

Figures

Figure 1

(A-E) Normalized structural and energy profiles at ES and EE. Individual parameter trends within each major category are
shown separately, with normalized parameter values on the ordinate and nucleotide position relative to the ES/EE on the
abscissa. (F) Combined structural and individual energy profiles plotted together, with the grey region highlighting the area
undergoing transition.
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Figure 2

(A) Correlation matrices depicting the relationships among the seven final parameters at ES and EE. (B) Feature importance
analysis conducted through PCA, revealing significant contributions of all seven parameters.
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Figure 3

A flowchart outlining the steps implemented in ChemEXIN.

Figure 4
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AUROC depicting AUC scores for all three classes (A) CDS:0, (B) ES:1, and (C) EE: 2 across all classifiers employed over the
Blind-Evaluation Set

Figure 5

3D-CNN architecture employed within the three organism-specific models.

Figure 6

Heatmaps depicting the performance of all methods across all three organisms. (A) H. sapiens (B) M. musculus (C) C.
elegans.
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Figure 7

Performance evaluation of (A) ChemEXIN, and (B) Augustus on non-protein coding gene (lncRNA, tRNA, and rRNA)
datasets.
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