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SUMMARY

Rice, apart from abiotic stress, is prone to attack from multiple pathogens. Pre-
dominantly, the two rice pathogens, bacterial Xanthomonas oryzae (Xoo) and
hemibiotrophic fungus, Magnaporthe oryzae, are extensively well explored for
more than the last decade. However, because of lack of holistic studies, we
design a deep learning-based rice network model (DLNet) that has explored
the quantitative differences resulting in the distinct rice network architecture.
Validation studies on rice in response to biotic stresses show that DLNet outper-
forms other machine learning methods. The current finding indicates the
compactness of the rice PTI network and the rise of independent modules in
the rice ETI network, resulting in similar patterns of the plant immune response.
The results also show more independent network modules and minimum struc-
tural disorderness in rice-M. oryzae as compared to the rice-Xoomodel revealing
the different adaptation strategies of the rice plant to evade pathogen effectors.

INTRODUCTION

The rice plants are constantly exposed to potential pathogens, which cause diseases, compromising crop

yield and quality. The major rice pathogens are the hemibiotrophic fungus Magnaporthe oryzae (syn. Pyr-

icularia oryzae), which causes rice blast and affects all parts of the rice plant (Duan et al., 2014; Liu and

Wang, 2016), and the biotrophic bacterium Xanthomonas oryzae pv. Oryzae (Xoo) causes leaf blight

(Niño-Liu et al., 2006). These two pathogens account for substantial losses in rice production that impact

60 million people worldwide (Ma et al., 2019; Parker et al., 2008).

To counter pathogen invasion, the plant immune system employs a two-tiered defense mechanism gov-

erned by pattern recognition receptors (PRRs) and cytoplasmic immunoreceptors (Han, 2019; Jones and

Dangl, 2006), resulting in pattern-triggered immunity (PTI) and the recognition of avirulence (Avr) pathogen

effector, activates the resistance (R) genes of a plant, resulting in effector-triggered immunity (ETI)

(Meisrimler et al., 2021). The PTI/ETI (PRRs/R gene) network fine-tunes the plant response to achieve robust

immunity against multiple pathogens (Kim et al., 2014). Based on the hypothesis underlying PTI/ETI

discrimination, the entire PTI/ETI network of Arabidopsis thaliana was reconstructed, revealing distinct

network modules encompassing different immune-related genes (Dong et al., 2015). However, in addition

to the PTI/ETI discrimination for a single pathogen, rice is infected by multiple pathogens, such as bio-

trophic pathogen Xoo and hemibiotrophic fungus M. oryzae (Dodds, 2010; Kämper et al., 2006), which

trigger different ETI response and complicates the study of the desired network. Besides, high yield and

broad-spectrum resistance (BSR) are the two most important goals of rice breeding. However, the genes

encoding BSR with higher yields are difficult to achieve because of the diverse rice responses to major

pathogens (Ke et al., 2017). Together with the limitations of the currently available datasets, the above com-

plications impede understanding the immune-response compendium of genes activated in response to

multiple pathogens. So, a complete systematic conception of how the intertwined networks of genes

related to the immune system contribute to typical PTI/ETI and within-ETI differences for two contrasting

pathogenic lifestyles in rice is urgently needed.

Machine learning (ML) methods are highly effective for automatic informationmining from vast datasets. To

date, ML approaches have been used in Arabidopsis to identify abiotic stress-responsive genes (Ma et al.,

2014); compute developmental stage-specific gene-association networks (Bassel et al., 2011); and to

differentiate between stress-responsive genes (Dong et al., 2015; Zhang et al., 2020). In rice, ML has

been used to distinguish abiotic and biotic stress-responsive genes (Shaik and Ramakrishna, 2014) and
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Figure 1. Schematic diagram of the study methodology

(A) Protein-protein interaction and abiotic stress response gene co-expression data were obtained from three databases.

(B) Unreliable gene association data was filtered out (see STARMethods). The remaining high-quality data was assembled

into an integrative gene network with 4,037 genes and 39,655 interactions (RiceONE).

(C) the mRNA expression profile of rice for three biotic stress responses was extracted for 4,037 genes identified in the

previous step.

(D) the model was trained and tested for the classification task using 10-fold cross-validation.

(E) the DLNet model is applied to expression data to calculate the feature score for each gene.

(F) DLNet-based modular networks for the three defense responses were constructed using expression profile and

integrative interaction data. Permutation, 100 null hypothesis models, and Student’s t-test were performed to construct

the modular network.

(G) network data visualization web browser (herein, named as RicePathDLNet) is developed.
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for the development of RicePPINet, a database of predicted protein-protein interactions of rice associated

with multiple agronomic traits (Liu et al., 2017). Advances in deep learning (DL), an ML subtype, have enor-

mous potential in this field of research in terms of enhanced precision and have been successfully used in

plant phenotypic imaging (Taghavi Namin et al., 2018; Ziamtsov and Navlakha, 2019). In DL applications, to

date, the number of samples used exceeds the number of features (i.e., n > p) for predictive model con-

struction. However, in the case of expression profiling data, DL classification is impeded where n < p.

Two kinds of DL approaches (based on n < p)—forgeNet and a graph-embedded deep feed-forward

network—were recently used successfully as a core for the classification of human tumor samples with

higher accuracy (Kong and Yu, 2018, 2020).

In the present study, forgeNet based deep neural network on a rice model was developed that implements

the integration of supervised DL algorithm and gene network analysis (here referred to as DLNet in the pre-

sent study) in response to PAMP/MAMP, Xoo, andM. oryzae (Figure 1). To apply this framework to analyze

the network behavior against different biotic stress responses, we downloaded the raw gene association

data from various databases. After filtration of the raw data, we created an interconnected network by inte-

grating high-quality 4,037 genes. Expression profiles of the 4,037 genes in response to PAMP/Xoo/

M. oryzae and their control were downloaded from the NCBI database. DLNet uses the assembled gene

network and mRNA expression profile of network genes in response to PAMP/Xoo/M. oryzae to further

recognize candidate plant genes/interactions that participate in the defense response against biotrophic

and hemibiotrophic pathogens. DLNet-based gene set enrichment analysis was performed to provide

function annotation to each module and reveal the rice gene network’s distinct organization to multiple

pathogens. Intrinsic disorder proteins (IDPs) or intrinsic disorder regions (IDRs) are an important attribute
2 iScience 25, 104546, July 15, 2022
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of the network hub genes (Ceulemans et al., 2021). We additionally examine the rice hub’s disorder prop-

erty of three different responses.

In comparison, we found that DLNet clearly outperforms state-of-the-art machine learning algorithms;

network-guided forest (NGF), gradient boosting machine (GBM), and random forest (RF) on three different

treatments. In contrast to NGF, GBM, and RF, DLNet reveals numerous critical genes with known roles in

the plant defense response among the top 30 genes for each treatment group. Finally, we made our find-

ings available to the scientific community by creating a user-friendly visualization tool named Rice Path-

ogen Deep LearningNetwork (RicePathDLNet). These observations and tools will facilitate the understand-

ing of the rice plant to reveal its adaptational strategy under stress conditions and its engineering that are

more resistant to pathogens.

RESULTS

Rice gene network assembly (RiceONE)

We first created an interconnected network of genes by integrating two types of gene-association data:

(i) experimental and predicted protein-protein interaction (PPI) data that supported the interologs of six

model organisms (large-scale PPI experiments), and could be used for prospective analysis of rice func-

tional and systems biology approaches; and (ii) interaction data for abiotic stress-related transcription fac-

tors (TFs) and co-expression relationships. These concise datasets will be highly relevant to analyzing the

relationships between gene regulatory mechanisms at the center of the current study (McWhite et al.,

2020). For the PPI, interaction authenticity was evaluated using the method developed by Patil and Naka-

mura (2005). Gene associations in the abiotic stress response were filtered based on the Pearson correla-

tion coefficient and retained if at least one gene in a pair encoded a TF.

The integrated gene network comprises PPI and abiotic stress response data combined with immune

response expression data. We excluded the genes from the network that were not accounted for in the Af-

fymetrix Rice Genome Array. An integrated network (RiceONE) incorporates 4,037 genes and their 39,655

interactions. The bench-filtering scheme and increased genome coverage of RiceONE compared to the

rice PPI network indicated its suitability for further downstream analysis.

Model prediction performance and comparison

DL-based rice model (DLNet) uses both the forest model and graph-embedded deep-forward network

(GEDFN) simultaneously to provide a useful classification model for biotic stress discrimination (Figure 2).

We trained the model on rice gene expression (mRNA) data for three distinct immune responses: (i) rice

response to pathogen-associated molecular patterns, microbe-associated molecular patterns, and host-

derived damage-associated molecular patterns that trigger PTI; (ii) response to Xoo, i.e., defense against

a bacterial pathogen; and (iii) response to M. oryzae, i.e., defense against a fungal pathogen. The classifi-

cation was achieved via a 10-fold cross-validation process and predicted (a) the final accuracy, representing

correctly predicted events; and (b) the area under the receiver operating characteristics curve (AUC), which

signified the lack of bias of the classification models used. DL-based rice model was highly reliable in all

groups, with an accuracy of approximately 0.92 for PTI, about 0.87 for Xoo, 0.94 for M. oryzae responses,

and an AUC of roughly 0.96 for Xoo, and around 0.98 for the PAMP/MAMP andM. oryzae response (Table 1;

Figures 3A–3C). Previously, one other algorithm (Dong et al., 2015), the network guided forest (NGF), was

applied to Arabidopsis datasets, yielding an accuracy of 0.85 and AUC of 0.94. Therefore, in order to eval-

uate the predictive performance and generalization of our developed DLNet rice model, we also attemp-

ted NGF, GBM, and RF in the current study. Table 1 reveals that DLNet outperformed NGF, GBM, and RF

on all the above datasets.

To gain a detailed review of the performance of the DLNet model, we computed the true positive rate (TPR)

for the given false positive rates (FPR) and carried out a parallel comparison with NGF, GBM, and RF on all

three datasets. In Table S1, it can be observed that the DLNet rice model shows greater TPR for the given

FPR than any other classification method. For example, in response to M. oryzae, at an FPR of 0.1 (10%),

DLNet gives a TPR of 0.898 (�90%), which is about 0.157 (�16%), 0.08 (8%), and 0.03 (3%) higher than

NGF, GBM, and RF, respectively. Similarly, in response to Xoo, DLNet gives a TPR of 0.789 (�79%), that

is about that is about 0.067 (�7%), 0.098 (�10%), and 0.254 (25%) higher than NGF, GBM, and RF, respec-

tively. On the other hand, in response to PAMP/MAMP, the DLNet model performed almost as good as the

other methods (Table S1).
iScience 25, 104546, July 15, 2022 3



Figure 2. Graphical representation of the DLNet rice model

The feature extractor portion was first used to select the effective features from the original p features. The outcome

directly involves the construction of a directed feature graph in a supervised manner. The resulted features graph is more

informative to the specific classification task. The deep-learning portion uses the features graph as input and comprises

four hidden layers with corresponding neurons. In each hidden layer, the number of neurons is: features derived from the

graph, 64, 16, and 2, respectively.
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DLNet-based ranking of rice features

We averaged the significant score of all ten cross-validation tests for feature selection to obtain gene

ranking for the three groups (Tables S2–S4). Among the top 30 genes related to all models, the DLNet

model successfully described 14, 15, and 10 immune-related genes for the PAMP/MAMP, Xoo, and

M. oryzae classes, respectively. The top 30 genes with the highest score, complete functional annotation,

and the respective reference list for the three categories of responses are provided in Tables S5–S7. We

examine the top-ranked 30 genes from each class predicted by DLNet with differentially expressed genes

(DEGs). Of note, some of the top-ranked genes predicted by the DLNet were featured in the list of high-

ranked DEGs, but present models clearly differentiate the top-ranked gene from the noise of other genes

compared to the traditional DEGs method (Figures 4 and S1A–S1F). To test the effectiveness of the devel-

oped DLNet rice model, we have attempted to validate it on the three different treatments (PAMP/MAMP,

Xoo, and M. oryzae).

Validation of DLNet on rice response to PAMPs

The DLNet ricemodel predictedmany immune-related genes involved in basal immunity (Table S5). One of

the top-ranked lectin receptor-type protein kinases (LOC_OS07g38810) recognized the bacterial path-

ogen-associated patterns (LPS) and mounted a defense response. It is also involved in the phytohormones

(brassinosteroid) signaling pathways against pathogens infection (Girija et al., 2017; Zhang et al., 2016).

OsWRKY107 (LOC_Os01g09080), the type II pathogen recognition receptor (PRR), negatively regulated

the plant immune response and up-regulated only in response to the compatible interaction with the

Xoo (Choi et al., 2017). Another ranked gene, receptor-type protein kinase (LOC_Os11g40970; LRR-XII sub-

family, non-RD class), homologous of the EF-Tu receptor (EFR), functioned as PRR and was found to regu-

late pattern trigger immune response in rice (Zhang et al., 2016). A complete list of the top 30 genes in

response to PAMP with their role in plant immunity is provided in Table S5.

Validation of DLNet on rice response to X. oryzae (Xoo)

Similarly, the DLNet rice model also predicted some specific genes in response to a bacterial pathogen,

Xoo (Table S6). OsRad51A1 (LOC_Os11g40150) is conserved across the species involved in the
4 iScience 25, 104546, July 15, 2022



Table 1. Classification performance of DLNet model for rice in response to pathogens with other machine learning

algorithms

Method

DLNet

Network

guided Forest

(NGF)

Gradient

Boosting

Machine (GBM)

Random Forest

(RF)

ACCa AUCb ACCa AUCb ACCa AUCb ACCa AUCb

M. oryzae vs Control

SDc

0.94

0.04

0.98

0.03

0.89

0.05

0.97

0.03

0.92

0.05

0.97

0.03

0.91

0.05

0.97

0.03

Xoo vs Control

SDc

0.87

0.04

0.96

0.02

0.84

0.04

0.92

0.06

0.86

0.04

0.95

0.04

0.83

0.08

0.91

0.06

PAMP vs Control

SDc

0.92

0.02

0.98

0.03

0.94

0.02

0.98

0.04

0.92

0.03

0.97

0.04

0.92

0.05

0.98

0.04

arepresents accuracy.
brepresents the area under the receiver operating characteristic curve.
crepresents standard deviation.
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SA-mediated signaling pathways in plant defense response. Overexpressed OsRad51A1 gene in plants

prompts a hypersensitive reaction, resulting in cell death and enhanced the disease resistance in rice

and Arabidopsis by changing the expression level of immune-related genes and SA-dependent signaling

genes during inoculation of rice pathogens. Among the top genes, NB-ARC domain-containing disease-

resistant gene aquaporin NIP1-1 (LOC_Os02g13870), a plasma membrane aquaporin, was found to have

higher expression in response to hydrogen peroxide H2O2 which disrupts cell signaling and promotes pro-

grammed cell death in plants as a defense mechanism (Sadhukhan et al., 2017). The aquaporin NIP1-1 has

been discovered to interact with the bacterial type III effector HopD1 and is crucial to conferring plant de-

fense response (Meisrimler et al., 2021; Webling et al., 2014). MYB51 (LOC_Os08g33150) is one of the top-

ranking genes demonstrated elevated in Xoo contaminated rice leaves of vulnerable rice lines (Tariq et al.,

2019). A recent study revealed that the Arabidopsis MYB51 gene modulates the indolic glucosinolate syn-

thesis in the leaves and interacts with wound response signaling pathways after inoculation with a bacterial

pathogen (Lakshmanan et al., 2012). A complete list of the top 30 genes in response to Xoowith their role in

plant immunity is provided in Table S6.

Validation of DLNet on rice response to M. oryzae

The DLNet rice model predicted particular genes found specific in response to the devastating pathogen

M. oryzae (Table S7). OsCPK4 (LOC_Os02g03410) confers resistance to fungal pathogenM. oryzae by pre-

venting it frompenetrating the plant. This resistance is associatedwith the accumulation of glycosylated sal-

icylic acid hormone, production of ROS, and gene expression of defense-related genes without affecting

rice production. Overexpressed OsCPK4-mediated resistance interferes with fungal penetration rather

than colonization (Bundó and Coca, 2016). Another essential gene, OsERF83 (LOC_Os03g64260), confirms

the disease resistance to the hemibiotrophic pathogenM. oryzae. Numerous phytohormones stimulate the

OsERF83 expression in the biotic stress response. Its overexpression in transgenic rice lines suppresses the

formation of the lesion. It regulates numerous pathogenesis-related genes in response to rice blast disease,

indicating that it positively regulates the rice immune response and is involved in several different signaling

pathways (Tezuka et al., 2019). Another top-ranked specific gene, OsWAK25 (LOC_Os03g12470), was over-

expressed in the early phase of rice blast disease, with a 60-fold increase in expression compared to wild-

type and resistance to the biotrophic pathogen Xoo. Overexpressed OsWAK25 rice line modulates the

NH1 (OsNPR1), which confers disease resistance to biotrophic and hemibiotrophic pathogens and suscep-

tibility to necrotrophic pathogens (Brutus et al., 2010; Harkenrider et al., 2016; Seo et al., 2011). A complete

list of the top 30 genes in response to M. oryzae with their role in plant immunity is provided in Table S7.

Exploring rice network response to PAMP/MAMP, Xoo, and M. oryzae

Plants are an excellent example of how nature uses a modular design to organize information, as intercon-

necting modules play significant roles in specific biological processes (Bassel et al., 2011). To identify

densely connected network modules, RiceONE was clustered using the Markov cluster (MCL) algorithm

(Enright et al., 2002) and eliminated the modules with less than three genes, resulting in 314 modules

(Table S8).
iScience 25, 104546, July 15, 2022 5



Figure 3. Classification performance of the model

(A–C) ROC-AUC plot (A) in response to PAMP/MAMP, (B) in response to Xoo, and (C) in response to M. oryzae. In response to Xoo and M. oryzae, DLNet

revealed better performance than the other three methods; in response to PAMP/MAMP, DLNet performed comparably to the other three methods.
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To gain insight into the overall rice gene networks enabled by PAMP/MAMP, Xoo, and M. oryzae re-

sponses, Gene Set Enrichment Analysis (GSEA) and Student’s t-test were used to define immune

response-related network modules. It led to the construction of three distinct modular network models.

First, we performed DLNet-based GSEA by interchanging gene expression data with the genes score.

We identified significant modules by using 100 null hypothesis models in the background by randomly

changing the phenotypic levels of expression data used by the DLNet model (Figure S2). To detect biolog-

ical modules of interest, DLNet rice models were used to identify 105, 113, and 104 modules in response to

PAMP, Xoo, andM. oryzae groups, respectively (permutation test, p < 0.05). The generated modules were

assigned into five functional groups using the GO biological term; defense response, signal transduction,

transcription regulation, growth or development, and hormones. Modules that did not contain these five

GO enrichment terms were omitted from further analysis, yielding 39, 39, and 40 modules in the rice

network related to PAMP/MAMP, Xoo, and M. oryzae groups, respectively. These corresponded to 708

genes and 7,788 interactions, 886 genes and 9,431 interactions, and 882 genes and 15,886 interactions,

respectively. Interestingly, 11modules were shared between PAMP/MAMP and the Xoo group; 10modules

were shared between PAMP/MAMP and the M. oryzae group; 08 modules were shared between Xoo and

the M. oryzae group, and three modules were found to be common to all groups. (Tables S9–S11).

Rice modular network models in response to PAMP/MAMP, Xoo, and M. oryzae were distinct with higher

compactness in the rice’s PTI networks, consistent with the Arabidopsis PTI network. The generated rice

network in response to Xoo and M. oryzae was also observed in line with the analysis of Arabidopsis

(Dong et al., 2015) that encompassed independent modules in response to M. oryzae and Xoo. Close in-

spection of the rice immune response to Xoo and M. oryzae reveals that the modules were more densely

connected in the Xoo network model than those in the M. oryzae network model (Figure 5). The M. oryzae

network model encompassed numerous independent modules, with only a few detected links to the

central module. Moreover, M. oryzae is one of rice’s most devastating pathogens; our finding of more in-

dependent signaling pathways in the rice defense modules model in response toM. oryzae also confers its

tremendous advantages over the network models in response to PAMP and Xoo.

Intrinsic structural disorder prediction of hub genes in the rice network induced by PAMP/

MAMP, Xoo, and M. oryzae

Hub proteins frequently include the intrinsic disorder domain, most often found in regions with intrinsically

disordered protein structures. Intrinsically disordered proteins (IDPs) or intrinsically disordered regions

(IDRs) strictly lack defined secondary and tertiary protein structures and possess flexible regions. Upon

binding to their particular targets, IDPs or IDRs can bring a transition from disorder to order, resulting in

a more stable fold (Hamann et al., 2020). This flexibility of IDPs/IDRs enables the hub protein to undergo

various protein-DNA interactions, protein-protein interactions, or posttranslational modification sites. In

plant-pathogen interactions, numerous proteins involved in biotic stress stimulus are known to harbor

IDRs/IDPs, thus relying on the interaction partners to alter the gene expression and activate the signaling

transduction cascade (Covarrubias et al., 2020). A recent review on the disorder (IDRs/IDPs) in hub protein
6 iScience 25, 104546, July 15, 2022



Figure 4. Differences between gene expression analysis and the DLNet model

(A–C) Changes in gene expression of top 30 genes (green) (A) in response to PAMP/MAMP associated data, (B) in

response to Xoo, and (C) in response to M. oryzae. Violet color genes are among the 30 top genes discovered by the

traditional gene expression method and the DLNet method.

(D and E) DLNet model score of each of the top 30 genes (red) (D) in response to PAMP/MAMP, (E) in response to Xoo, and

(F) in response to M. oryzae (‘‘see also Figure S1’’).
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has explored the nature of immune-related genes during plant-pathogen interactions (Ceulemans et al.,

2021). It is still not apparent if hub genes associated with IDPs/IDRs prove to be beneficial to either path-

ogen or plant itself. Our study has investigated the IDPs/IDRs behavior of rice immune-related hub genes in

response to PAMP/MAMP, Xoo, and M. oryzae.

IDPs/IDRs of the respective hub genes in the three distinct rice networks are computed using an online

application called SoftBerry (www.softberry.com). We have selected those hub genes having more than

50 interaction partners as an input to compute the disorder. At the level of more than 50% disorder, we

observed 57% (59/104) rice hub genes in response to PAMP, 51% (62/122), and 33% (83/251) rice hub genes

in response to Xoo and M. oryzae, respectively.

Top-ranked genes with more than 50 interactions were thoroughly investigated for disorder prediction us-

ing the flDPnn (Hu et al., 2021) (http://biomine.cs.vcu.edu/servers/flDPnn/) in response to PAMP/MAMP,

Xoo, and M. oryzae. Accordingly, OsGRF8 (LOC_Os11g35030) with 65% disorder (Figure 6A), MYB family

transcription factor (LOC_Os08g06240) with 59% disorder (Figure 6B) were observed among the top-

ranked genes in PAMP/MAMP, and Xoo mediated network response. However, in the case of M. oryzae

response, we observed four of the genes with a significantly lower percentage of disorder level, including

leucine-rich repeat family protein (LOC_Os04g55420); 15% disorder (Figure 6C), and GRAS family protein

(LOC_Os11g47870); 12% disorder (Figure 6D). The lower percentage of disorder (IDPs/IDRs) hub genes in

rice in response to a devastating pathogen (M. oryzae) reflects the need to avoid maximum disorderliness

in rice hub genes, hence likely probable escape recognition from pathogen effectors. Therefore, it can be
iScience 25, 104546, July 15, 2022 7
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Figure 5. Network architectures of three different immune responses

(A) PTI interactome consists of 39 shared and distinct modules for 708 genes and 7,788 interactions.

(B) ETI-Xoo interactome comprises 39 shared and specific modules for 886 genes and 9,431 interactions.

(C) ETI-M. oryzae interactome, consisting of 40 shared and distinct modules for 882 genes and 15,886 interactions.
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postulated that depending on the stress condition, IDPs/IDRs can play a significant role in comprehending

how the signaling cascade contributes from two aspects to the phenotypic plasticity: the pathogenic mi-

crobes and the host plant to outcompete one another.

RicePathDLNet: An online visualization repository for exploring network modules

To assist experimental rice researchers, a user-friendly interactive web browser, RicePathDLNet (https://

fgcsl.ihbt.res.in/RicePathDLNet), is built using Linux-Apache-MySQL-PHP (LAMP), a package built on the

Linux operating system. This repository will provide detailed information on the gene composition for

each module from three different network models. Different module architectures in response to biotic

stresses are mentioned in detail. It also describes the modules assigned to five GO terms and their re-

sponses in plant defense based on the rice genes and their interactions. For further analysis, the user

can look through the entire list of genes, their interactions, the list of modules, and the protein sequences

of the network hub genes. It also contains the protein sequences of hub genes in response to the above

networks. Thus, the RicePathDLNet repository will help in the section that includes comprehensive

information on accessing the repository. The model predictions will aid the rice-focused researchers in un-

derstanding the distinct network levels in PTI- and ETI-basedmodels and within ETI-M. oryzae and ETI-Xoo

models.

DISCUSSION

Plants are continually competing with pathogens and vice-versa for survival and development. Such

interactions in agriculturally important species can directly impact crop yield. One of the major obstacles

to attaining maximum rice yield is the severity of diseases caused by multiple pathogenic organisms. To

overcome this, plants display dynamic, carefully controlled transcriptome alterations in response to path-

ogen challenges. Both positive and negative regulators regulate plant immune signaling. It is critical to

balance growth and defense responses to respond appropriately to environmental changes.

Interactome mappings in diverse plant species during the past 20 years have led to the expansion of

network biology premises. However, it was not enough to gain insights from a single molecular system

description in plant-pathogen interactions (Ahmed et al., 2018). Therefore, to address this, we developed

such networks based on expression profile data in response to PAMP/Xoo/M. oryzae, leading to the con-

struction of DL-based supervised RicePathDLNet. The findings revealed distinct behavior of rice defense

architecture and intrinsic disorder structure, providing profound insights into how rice immune networks

closely regulate and coordinate with each other depending on stress conditions. The distinct network ar-

chitecture of the rice in response to pathogens shown in the study will be helpful for further understanding

of rice immunity evolution, and it can provide valuable information for breeding the next generation of dis-

ease-resistant crops.
8 iScience 25, 104546, July 15, 2022
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Figure 6. Prediction of intrinsically disordered protein region in network hub genes

(A–D) Intrinsically disordered protein region prediction using flDPnn web server of (A) LOC_Os11g35030, one of the top-ranked and network hub genes in

response to PAMP/MAMP. (B) LOC_Os08g06240 is the top-ranked and also a network hub gene in response to Xoo. (C and D) LOC_Os04g55420 and

LOC_Os11g47870 are the top-ranked and network hub genes in response to M. oryzae.
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We observed higher discrimination accuracy of the DLNet model compared to other ML (NGF/GBM/RF)

methods in all treatment datasets used. The rice protein-protein interaction dataset is still far from com-

plete, which might result in misspecification of the feature graph, hence detrimental to proper classifica-

tion. The better advantages of the DLNet model in coping with a limited interaction dataset lies in the

proper construction of an appropriate graph of features within the feature space from the known expres-

sion dataset. Moreover, the other advancedML algorithm, NGF, incorporates the feature network informa-

tion from a well-complete feature graph; therefore, it is likely that there might be less accuracy because of

the incomplete feature graph obtained.

We generated and explored the list of the top 30 predicted genes and found most of the genes specific to

the particular response in rice. Another advantage of the DLNet model reveals a higher probability of rice

genes with known defense functions among the top 30 genes for each specific treatment group, in contrast

to NGF, GBM, and RF. Some of the top-ranked genes previously unknown to plant immune response found

in this study can be considered for further experimental validation. It also observed that several top-ranked

immune-related genes identified by DLNet in each group show low or moderate expression in the tradi-

tional gene expression method (Figure 4). For example, OsWRKY51 (LOC_04g21950) in the PTI group

(Figures S1A and S1B), aquaporin NIP1-1 (LOC Os02g13870) in response to Xoo (Figures S1C and S1D),

and OsCPK4 (LOC_Os02g03410) in response to M. oryzae (Figures S1E and S1F) all are the positive regu-

lators in plant immune response to the pathogen, and neglected by traditional gene expression methods

but assign higher ranked in present model classification. These top candidate genes can be used as a
iScience 25, 104546, July 15, 2022 9
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biomarker for specific pathogen responses, whereas shared genes equip rice with broad-spectrum resis-

tance to numerous biotic stresses.

By reconstructing refined rice PPI (RiceONE), we lay out an integrable, step-by-step network analysis struc-

ture, RicePathDLNet, which incorporates network assembly as per prior information (a supervised step) to

construct the DLNet in response to multiple pathogens. This approach generates different group models,

such as PTI, ETI-Xoo, and ETI-M. oryzae. Analysis of the models of the immune responses of rice and Ara-

bidopsis suggested the operation of synergistic signaling pathways in response to PTI and compensatory

responses to ETI, in agreement with the conclusions of Tsuda et al. (2009). The complete network analysis of

ETI-Xoo and ETI-M. oryzae generates the hypothesis that the more destructive the pathogen, the network

module immune response will be profoundly independent with onemodule that can affect the encompass-

ing modules that the defense modules in the related model are not affected at all. Elaboration of the PTI

and ETI models revealed a distinct network response of the immune-related genes in Arabidopsis and rice.

In Arabidopsis, protein phosphorylation plays a central role in connecting the modules in PTI and ETI

groups (Dong et al., 2015).

Interestingly, transcription regulation plays a central module-linking role in all the generated models

(Figure S3). Response to a pathogen leads to a dramatic reprogramming of transcription to favor

stress/defense responses over routine cellular function. The activity of these transcriptional regulators

is orchestrated by a blend of signaling hormones, such as SA, JA, and ethylene (Moore et al., 2011). Pre-

vious reports suggested a difference in the core network of rice and Arabidopsis, leading to different

mechanisms triggered in response to the same pathogen, M. oryzae (Park et al., 2009). Hence, the recon-

structed network of the immune response of rice to the pathogen(s) appears to be distinct from that in

Arabidopsis.

For the last decade, IDPs/IDRs assumed much significance, and reportedly, more than 30% of the protein

has been predicted as disordered in the eukaryotes. Moreover, proteins with IDPs/IDRs are associated with

the pathogenesis of human diseases (Hu et al., 2021). The finding of IDPs/IDRs has challenged the dogma

of structural biology, stating that the tertiary structure (3D) determines the protein’s function. The lack of 3D

folds in IDPs/IDRs resulting in the highly variable regions with some conserved motifs can allow the flexi-

bility of these proteins to mediate interaction for more than one partner(s). The extensive presence of

hub proteins harboring IDPs/IDRs under abiotic/biotic stress conditions in plants is well reported (Ceule-

mans et al., 2021; Marin and Ott, 2014), generating different hypotheses. One hypothesis was whether

these plant hub proteins are simultaneously getting any advantage of displayingmore percentage of disor-

dered structure (IDPs/IDRs). So, we have thoroughly investigated the hub genes in the PTI, ETI-Xoo, and

ETI-M. oryzae networks that provide insights to display their nature as likely disorder states (IDPs/IDRs).

And the proportion of these hub genes surprisingly varies among these three distinct immune-related net-

works leading to the speculation about how plants have adjusted accordingly depending on the stress

conditions.

The lower proportion of rice network IDPs/IDRs hub genes in response to a devastating pathogen reflects

the need to avoid maximum disorderliness in rice hub genes, hence likely probable escape recognition

from pathogen effectors. This observation led to the hypothesis that the disorder level of the genes might

be correlated with the biotic stress condition wherein the percentage of hub genes having IDPs/IDRs is

drastically decreasing with the increasing destructiveness of the pathogen. It can thus be postulated

that our finding is in line with Carella’s zigzag model of immune responses (Carella et al., 2018), where

plants and pathogens are in the coevolutionary arms race to outdo each other; more studies will be

required to substantiate these hypotheses.

Though the current work is impeded by the unavailability of the large-scale datasets for rice treatments

in response to different pathogens, we believe that the problem will be diminished eventfully with the

incorporation of more treatment data and advancement in deep learning to cope with small scale data-

sets. Furthermore, integrated expression profiling of mRNA and their target genes associated with the

treatments can enhance and advance our study. Moreover, the role of effectors will be more required

to ascertain the complete picture of rice-pathogen interactions. So far, to our knowledge, this is the

first-ever implementation of deep learning-based analysis not only for rice but also for the plant geno-

mics datasets.
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LIMITATIONS OF THE STUDY

Plant immune network generation is a highly complex process, and this study attempted to focus on distin-

guished three different immune-related rice network responses under two conditions (Treatment/Control).

This method tried to filter the interactions with the gold-standard process; however, because of the limited

availability of high-quality omics and molecular network data and thus should be interpreted with caution.

Another limitation of current work is that only highly correlated protein-protein interactions are considered;

those gene(s) without interaction partner(s) that might play a role in plant immune response will be largely

missed from our study. The approach used in this study could be applied to other genomics data to identify

actionable gene/module sets in other plant-pathogen genomics data. Still, the main issue is low to mod-

erate ground truth multi-omics plant immune dataset for other models/non-models plant species, which

may lead to class imbalance and overcome of negatively labeled samples than positive labeled samples.

Plant diseases are always a significant concern in agriculture; if the number of samples increases, this devel-

oped method can help identify the defense-related genes at different time phases of the disease.
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Deposited data

Raw expression data NCBI https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GPL2025/ and Table S12

Experimental and predicted protein-protein

interactions

BioGRID https://thebiogrid.org/

Predicted protein-protein interactions PRIN http://bis.zju.edu.cn/prin/

Co-expression interactions data under abiotic

stress

RECoN https://plantstress-pereira.uark.edu/RECoN/

Code availability Present study https://gitlab.com/ravisaroch/dlnet-host-

pathogen-interaction/

RicePathDLNet Present study https://fgcsl.ihbt.res.in/RicePathDLNet/

Software and algorithms

Python3 Python https://www.python.org/

NumPy NumPy https://numpy.org/

Pandas pandas https://pandas.pydata.org/

Sklearn sklearn https://scikit-learn.org/stable/

Random Forest sklearn https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.

RandomForestClassifier/

XGBoost sklearn https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.

GradientBoostingClassifier/

R R Project https://cran.r-project.org/

Tensorflow 2 Tensorflow https://www.tensorflow.org/

SciPy SciPy https://scipy.org/

matplotlib Python Library https://matplotlib.org/

mcl Enright et al. (2002) https://micans.org/mcl/
RESOURCE AVAILABILITY

Lead contact

Further information and request for resources should be directed to the lead contact, Vishal Acharya

(vishal@ihbt.res.in).
Material availability

This study did not generate new unique reagents or materials.

Data and code availability

d The raw expression data used in the study were publicly available and provided as Table S12. Addition-

ally, datasets resources link is provided in key resource table.

d The source code used in the study are available at GitLab link https://gitlab.com/ravisaroch/

dlnet-host-pathogen-interaction. RicePathDLNet: an online visualization repository for exploring

network modules and other data is available at https://fgcsl.ihbt.res.in/RicePathDLNet.
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d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon reasonable request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

No experimental model system used for this study.

METHOD DETAILS

Data collection and processing

Experimental and multispecies predicted PPI network was compiled from BioGRID (Oughtred et al., 2019)

and the Predicted Rice Interactome Network (PRIN) databases (Gu et al., 2011). The abiotic stress response

co-expression network dataset was downloaded from the Rice Environment Coexpression Network

(RECoN ) (Krishnan et al., 2017).

Rice gene expression data for four different immune responses (PTI, Xoo, M. oryzae, and control) were

downloaded from the Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo) of the National Cen-

ter for Biotechnology Information. For the PTI response, 21 gene expression profiles were extracted for rice

treated with PAMPs, MAMPs, and DAMPs. For the ETI response, 36 and 31 gene expression profiles were

extracted in response to avirulent Xoo and M. oryzae strains, respectively. The control dataset comprised

64 gene expression profiles that reflected control experiments for the above treatments. Complete infor-

mation on the gene expression profiles is provided in Table S12. Raw expression data (Affymetrix platform)

were pre-processed using a robust multichip average (RMA) process of affy package (Gautier et al., 2004),

and z-score transformed to eliminate the batch effect as z-score overcome the other well-known methods

like ComBat and the inverse normal method (meta-analysis) (Lazar et al., 2013; Yasrebi, 2016).

Filtering the PPI and abiotic response network

The accuracy of PPI network was evaluated by adopting the filtering process of Patil and Nakamura (2005).

The interaction between two proteins was deemed valid, providing at least one annotation with the same

GO. agriGo v2.0 (Tian et al., 2017) was used to compute the Gene Ontology of the interacting pairs.

For the abiotic response network data, only interaction pairs with a Pearson correlation coefficient (PCC)R

0.7 and with at least one TF gene in a pair were retained as PCC value equal to or larger than 0.7 for

interaction data is considered as the best probable candidates for protein-protein interactions. The im-

mune-related gene co-expression network profile was avoided to reduce the risk of introducing bias in

the algorithm (Table S13).

DLNet rice model construction

DLNet model was constructed to calculate features importance, model classification, and identification of

significance modules rice data under three distinct biotic stress conditions. The DLNet framework com-

prises three components: the features extractor part, deep feed-forward neural network (DFN) part (see

detail in Kong and Yu, 2020) and significant modules identification. First, the extractor part selects the use-

ful features from the expression profile of rice treated with PAMPs, X. oryzae, and M. oryzae respectively,

using the forest model of rice genes with the supervision of a training label for each sample (treatment +

control) of rice. It constructs a directed feature graph based on individual decision tree splitting order for

each expression profile.

FðQÞ = fTmðQmÞg; m = 1;..;M;

where F represents the assembly of decision trees by extracting the useful subset of rice features (genes);M

corresponds to the total number of forest trees; and Q = {Q = Q1,..,Qm} describes the splitting values

and splitting variables, that is, the splitting order parameters. F is equipped with the rice expression profile

(training) data and rice expression (training) levels (rice features) as Xtrain ˛ <n
train

3p and Ytrain ˛ <n
train,

respectively, to build decision trees with a subset of features and directed connections as splitting order.

Then, the set of graphs with directed edges can be built as

G = fGmðVm;EmÞg;m = 1;..;M;

where Vm corresponds to vertices (features) and Em corresponds to edges (features connections) inGm. The

aggregate rice feature graph G obtained after the assembly of all graphs is represented as
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GðV ; EÞ = W
M

m = 1
GmðVm; EmÞ

A directed rice feature graph contains only those features that at least once participate in the graph to

split the given samples in the rice expression profile. The input feature graph as a matrix is then transformed

as Xtrain ˛ <n3|v| because the number of vertices denoted in the feature graph (G) is |v| and |v| < p (Kong and

Yu, 2020).

The second part of the model uses the deep feed-forward neural network (DFN) to incorporate the graph

layer. DFN can be described as follows:

PrðyjX;ѺÞ = f ðZoutWout + boutÞ
Where X = Xtrain ˛ <n3|v| represents the data matrix of rice features with n number of rice samples and |v|

are extracted features from the original rice expression profile; ytrain ˛ <n is the outcome label for binary

(bout = 2) classification task (control or treated with PAMPs/Xoo/M. oryzae);Ѻ represents the possible param-

eter of themodel and f ð ,Þ represents the softmax function, which converts the output layer into the predicted

probability.

Zout = sðZlWl +blÞ
..
Zk +1 = sðZkWk +bkÞ
..
Z1 = sðXWin +binÞ

Where Zk,(k=1,.., l-1, out) are neurons in the hidden layer;Wk corresponds to the weight matrix; bk rep-

resents the biasness, and s($) represents the rectified linear unit (ReLu) activation function. A stochastic

gradient descent (SGD) based algorithm (Adam optimizer) is used to train the model by a cross-entropy

loss function to update the parameter Ѻ. To change the weight parameters, the back-propagation algo-

rithm calculates from the cost function parameter and flows back over the network to measure the gradient

(Goodfellow et al., 2016)

HðѺÞ = � 1

n

Xn

i = 1

�
yi log

�bpi

�
+ ð1 � yiÞlog

�
1 � bpi

��
H (Ѻ) is the scalar cost function, and bpi is the fitted value of pi (probability prediction). A feature graph in-

formation incorporated in the DFN to construct GEDFN with the dimensions of the first hidden layer ðZ1Þ is
the same as the input layer (containing the same subset of rice features). A sparse connection can be

achieved between the input layer and the first hidden layer, and Z1 = sðXWin +binÞ is changed to

Z1 = sðXðWin 1AÞ + binÞ
Here 1 is the hamadard product, and A is the asymmetric adjacency matrix (in the current study), which

filters the connections between the input and the first hidden layer. More details about GEDFN can be

found in Kong and Yu (2018).

The PTI and control expression profiles were trained to generate the PTI-interlinked model; similarly, the

Xoo-ETI–interlinked model generated from gene expressions of Xoo, and the control; and, expression

profiles of M. oryzae and the control were implemented to train the M. oryzae-ETI interlined model. The

classification performance was conducted via 10-fold cross-validation; the final AUC and accuracy of the

model were assessed by average testing AUC and accuracy across the 10 datasets.

The significant contribution of the features to the classification imparted the primary biological mechanism.

To calculate the importance of the features in the classification, the model uses the information of nodes in

the input layer and the hidden neurons in the first hidden layer. For each feature, the significance score is

determined as the sum of absolute weight values directly associated with the characteristic node and its

corresponding hidden neuron in the first hidden layer:

si =
Xp
u = 1

���wðinÞ
iu IðAiu = 1Þ

���+ Xp
vi

���wðinÞ
iu IðAvi = 1Þ

���+ Xh1
m = 1

���wð1Þ
in

���; i = 1;.;p;

Here, si is the significance score for features i; w (in) and w (1) denote the weights between the input and

first hidden layers and weights between the first and the second hidden layers, respectively. The score
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comprises the importance of rice (in rice-pathogen interaction) features according to the directed vertex

connection in the feature graph and the feature’s contribution according to the connection to the second

hidden layer (Kong and Yu, 2018, 2020).
Significant network module identification

Markov cluster algorithm (MCL) (Enright et al., 2002) is very successful and can be used to discern quality

functional modules in a biological network based on the transition probability manipulation or stochastic

flows between graph nodes (Brohée and van Helden, 2006; Vlasblom and Wodak, 2009). The MCL algo-

rithm with default parameters was used to cluster RiceONE in the present study, and network modules

of more than two genes were retained for further analysis.

The GSEA algorithm (Mootha et al., 2003) with the custom scripts was used to classify network modules that

were substantially enriched with high-scoring genes in the three classes (PAMPs, Xanthomonas, and

Magnaporthe) (Figure S1). DLNet-based GSEA corresponding to the three categories was performed as

follows: First, according to their DLNet-based gene ranking score, all (N) genes in RiceONE were ordered

in decreasing order. Next, the summation from the gene with the maximal average score (g1) to the gene

with the minimal average score ðgNÞ was determined for a module with M genes (Figure S2). The summa-

tion across all genes is described as follows:

Xj

i = 1

Xiði % j%NÞ

if gi is a member of module M, then

Xi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � M

M

r
if gi is not a member of module M, then

Xi = �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

N � M

r
The module enrichment score was then calculated as:

max
i% j%N

Xj

i = 1

Xi

Gene set enrichment and functional classification

It is essential to know the statistical significance of the enrichment modules for each immune group. Accord-

ingly, the classphenotypeof theexpressionprofilewas randomlypermuted, and100 randomDL-basedmodels

were generated. The above procedures for DL-based GSEA were replicated in each random model. Enrich-

ment scores of all modules from the random DL models were amalgamated to form the background scores.

Then, Student’s t-test was performed to analyze the real enrichment scores as the proportion of background

enrichment and modules with p < 0.05 were considered significant and retained for further study.

PlantGSEA (Yi et al., 2013) was used for detailed essential network module annotation. The modules were

divided into five functional groups: defense response, signal transduction, transcriptional control, hor-

mone response, and growth or development. The modules enriched with other functional elements

were not considered for further analysis. Since more than one functional term may be enriched within a

module, terms with the lowest p value were considered significant GO terms. A thorough detail of the

related modules is given in Tables S9–S11.
Model evaluation and performance metrics

To evaluate the DLNet classification model, accuracy, sensitivity, and specificity parameters are consid-

ered. The area under the ROC curve (AUC) is also considered the evaluation parameter based on the

true positive rate (TPR) and false positive rate (FPR).

Accuracy =
TP+TN

TP+ FP+ TN+ FN
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Sensitivity = True Positive Rate ðTPRÞ = TP

TP+ FN
Specificity =
TN

TN+ FP
False Positive Rate ðFPRÞ =
FP

TN+ FP
= 1� Specificity

where true positive (TP) refers to the model correctly predicting the positive class, false positive (FP) refers

to the model incorrectly predicting the positive class, false negative (FN) refers to the model incorrectly

predicting the negative class, and true negative (TN) refer to the model correctly predict the negative class.
DLNet-based rice model implementation, architecture, training and testing

The framework uses the expression profile of genes from two different conditions (treatment and control)

to train a classification model to predict a class with a specific expression profile. The details information

about the algorithm is provided in the supporting method. The DLNet rice model comprises a supervised

random forest (RF) component to select useful features from raw data and a neural network component

consisting of hidden layers (containing graph-embedded p features, 64, 16, and 2 neurons in each hidden

layer, respectively) takes the generated feature graph and raw input to predict final outcomes. A dropout

rate of 0.3 was used between the hidden layers to overcome overfitting. The directed network model was

trained for 50 epochs using a batch size of 8 and a learning rate of 1 3 10–4. The DL models for three

different datasets were built and trained using the RF in the Scikit-learn (Breiman, 2001) package for super-

vised learning and a Tensorflow (Abadi et al., 2016) version 2.0 with adaptive moment estimation (Adam

optimizer) algorithm for gradient descent that updates network weight iterative based in training data

(Kingma and Ba, 2014). In the present study, 65% of each dataset (treatment + control) were randomly

selected to train the model, and the remaining 35% were used to validate the model performance.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

To construct the immune related modular network, Student’s t-test was performed between the original

enrichment score and 100 randomly background enrichment scores. The background score was calculated

by permutating class level of the expression data profiles. The modules having p value% 0.05 were consid-

ered significant for further analysis.
18 iScience 25, 104546, July 15, 2022
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