From traditional Machine Learning to modern day Deep Learning

Aakarsh Malhotra

Ph.D Scholar
IAB lab, IIIT-Delhi

IIII)

INDRAPRASTHA INSTITUTE of
INFORMATION TECHNOLOGY
DELHI

Machine learning?

Output: Task specific!

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Output: Task specific!

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Output: Task specific!

- Supervised Learning
- Unsupervised Learning

Dependency on data

Images: How does algorithms see it? IIII)

Images: How does algorithms see it? IIII)

If we have more data, we can learn more!

Images: How does algorithms see it? IIII)

However, things can get difficult!

Label: 1

Label: 7

One or Seven?

Random Decision Forest (RDF)

IIII)

INDRAPRASTHA INSTITUTE of
INFORMATION TECHNOLOGY
DELHI

RDF: Random Decision Forests

- Random
- Decision
- Forests \rightarrow Collection of trees!
- Decision Forests: Trees that take decision! aka: Decision Trees

Decision Tree

$$
\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

- We have people with:
- Red or blue colored hair
- Gender (F/M): 1 or 0
- Hair short/long
(underlined or not)
- Look at the data, 3 types of people:
- Blue colored males with short hair
- Red colored males with short hair
- Blue colored females with long hair

Aim: Split into groups such that different groups are dissimilar.

From a Decision Tree to Forest

1100000

Color->Number->Underline Underline->Color->Number

Color->Underline->Number

Underline->Number->Color

Number->Color->Underline

Number->Underline->Color

Underline->Number
Color->Number

Number->Underline

Color->Underline

Number->Color
Underline->Color

Different combinations and different number of trees learn to classify!

From a Decision Tree to Forest

1100000

Color->Number->Underline	Underline->Color->Number
Color->Underline->Number	Number->Color->Underline
Underline->Number->Color	Number->Underline->Color
Time for some randomness! Pick 10 trees.	

Underline->Number
Color->Number

Number->Underline
Color->Underline

Number->Color
Underline->Color

Different combinations and different number of trees learn to classify!

From a Forest to RDF

1100000

Color->Number->Underline Underline->Color->Number
Number->Color->Underline

Underline->Number->Color
 Time for some randomness! Pick 10 trees

Number->Underline

Color->Number

Number->Color
Underline->Color

Number
Color

Different combinations and different number of trees learn to classify!

From a Forest to RDF

OR
 1100000

Underline->Color->Number

Underline->Number->Color
 Number->Underline->Color

 Time for some randomness! Pick 10 trees

 Time for some randomness! Pick 10 trees}

Number->Underline

Color->Number
Color->Underline
Underline->Color

Underline
Color
Different combinations and different number of trees learn to classify!

Let us code!

Part 1: Loading the data

from keras.datasets import mnist import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
(X_Train, Y_Train), (X_Test, Y_Test)=mnist.load_data()

```
fig = plt.figure()
for i in range(9):
    plt.subplot(3,3,i+1)
    plt.imshow.(X_Train[i], cmap='gray').
    plt.title("Digit: {}".format(Y_Train[i]))
    plt.xticks([])
    plt.yticks([])
```


Let us code!

Part 2: Reshaping the data

- Input Image Dimension - 28x28
- Number of Images - 60,000
- Convert 2D image of dimension of 28×28 into one single vector of 1×784
- Do the above for each image and put these vectors in a matrix
- The output matrix will be of size $60,000 \times 784$

```
print(X_Train.shape)
nsamples_Tr, dimx, dimy = X_Train.shape
X_Train = X_Train.reshape((nsamples_Tr,dimx*dimy))
print(X_Train.shape)
print(Y_Train.shape)
print(X_Test.shape)
nsamples_Te, dimx, dimy = X_Test.shape
X_Test = X_Test.reshape((nsamples_Te,dimx*dimy))
print(X_Test.shape)
print(Y_Test.shape)
```


Let us code!

Part 3: Train RDF and predict!

```
rfc = RandomForestClassifier(n_estimators=10)
rfc.fit.(X_Train, Y_Train).
```

```
Accuracy=rfc.score(X_Test, Y_Test)*100
print(Accuracy)
Predictions=rfc.predict(X_Test)
print(Y_Test)
print(Predictions).
```


Convolutional Networks

IIII

INDRAPRASTHA INSTITUTE of
INFORMATION TECHNOLOGY
DELHI

Images: How does algorithms see it? ||II)

What is Convolution?

- "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

f				
1	2	2	3	3
4	4	5	3	2
1	3	4	5	1
4	1	2	0	1
7	2	1	3	4

$*$| g | | |
| :---: | :---: | :---: |
| 1 | 0 | -1 |
| 0 | 2 | 1 |
| 0 | -1 | 0 |

What is Convolution?

- "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

Output $=1 \times 1+2 \times 0+2 x(-1)+4 \times 0+4 \times 2+5 \times 1+1 \times 0+3 \times(-1)+4 \times 0=9$

What is Convolution?

- "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

f				
1	2	2	3	3
4	4	5	3	2
1	3	4	5	1
4	1	2	0	1
7	2	1	3	4

g	
$*$1 0 -1 0 2 1 0 -1 0$=$9 8 	

$$
\text { Output }=2 \times 1+2 \times 0+3 x(-1)+4 x 0+5 \times 2+3 x 1+3 x 0+4 x(-1)+5 \times 0=8
$$

What is Convolution?

- "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

Output $=4 \times 1+4 \times 0+5 \times(-1)+1 \times 0+3 \times 2+4 \times 1+4 \times 0+1 \times(-1)+2 \times 0=8$

What is Convolution?

- "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

f				
1	2	2	3	3
4	4	5	3	2
1	3	4	5	1
4	1	2	0	1
7	2	1	3	4

g
1 0 -1 0 2 1 0 -1 0$=$9 8 \ldots 8 \ldots \ldots \ldots \ldots \ldots

- The filter (g) helps in interpreting particular details in image (f).

Horizontal filter

| 0.0113 | 0.0149 | 0.0176 | 0.0186 | 0.0176 | 0.0149 | 0.0113 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0.0149 | 0.0197 | 0.0233 | 0.0246 | 0.0233 | 0.0197 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0149 | | | | | | $\begin{array}{lllllllll}0.0176 & 0.0233 & 0.0275 & 0.0290 & 0.0275 & 0.0233 & 0.0176\end{array}$ | 0.0186 | 0.0246 | 0.0290 | 0.0307 | 0.0290 | 0.0246 | 0.0186 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllll}0.0176 & 0.0233 & 0.0275 & 0.0290 & 0.0275 & 0.0233 & 0.0176\end{array}$ | 0.0149 | 0.0197 | 0.0233 | 0.0246 | 0.0233 | 0.0197 | 0.0149 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Gaussian Blur

Complex objects?

Deep learning models

- Tell the number of filters (g)
- Tell the shape of the filters ($3 \times 3,5 \times 5$ etc.)
- Provide lots of data
- Let the modal learn these filters!

Let us code!

Part 1: Loading the data (and importing libraries)

```
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
```

batch_size $=128$
num_classes $=10$
epochs $=2$
img_rows, img_cols $=28,28$
input_shape $=$ (img_rows, img_cols, 1)
(X_Train, Y_Train), (X_Test, Y_Test)=mnist.load_data()

Let us code!

Part 2: Reshaping the data

- Input Image Dimension - 28x28
- Convert into matrix of size: $60,000 \times 28 \times 28 \times 1$

```
print(X_Train.shape)
print.(X_Test.shape).
X_Train = X_Train.reshape(X_Train.shape[0], img_rows, img_cols, 1)
X_Test = X_Test.reshape(X_Test.shape[0], img_rows, img_cols, 1)
print(X_Train.shape)
print(X_Test.shape)
```

- A Labels - single value! -----> [1 x n_classes]
- Convert into matrix of size: $60,000 \times 10$

```
print(Y_Train[0])
Y_Train = keras.utils.to_categorical.(Y_Train, num_classes.).
Y_Test = keras.utils.to_categorical(Y_Test, num_classes)
print(Y_Train[0])
```


Let us code!

Part 3: Preprocessing the data

- Convert the data into range: $[0,1]$

```
X_Train = X_Train.astype('float32')
X_Test = X_Test.astype('float32')
X_Train /= 255
X_Test /= 255
```


Let us code!

Part 4: Create convolutional deep model

```
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',
    input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
#model.summary()
```


Let us code!

Part 5: Train, learn, and predict!

```
model.compile.(loss=keras.losses.categorical_crossentropy,
    optimizer=keras.optimizers.Adadelta(),
    metrics=['accuracy'].).
model.fit(X_Train, Y_Train,
    bätch_size=batch_size,
    epochs=epochs,
    verbose=1,
    validation_data=(X_Test, Y_Test))
```

score = model.evaluate (X_Test, Y_Test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

Thank you!!

IIII

INDRAPRASTHA INSTITUTE of
INFORMATION TECHNOLOGY
DELHI

