From traditional **Machine Learning** to modern day **Deep Learning**

<u>Aakarsh Malhotra</u> Ph.D Scholar IAB lab, IIIT-Delhi

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Machine learning?

Output: Task specific!

Supervised
 Learning

 Unsupervised Learning

 Reinforcement Learning

Output: Task specific!

 Supervised Learning

 Unsupervised Learning

 Reinforcement Learning

Output: Task specific!

 Supervised Learning

 Unsupervised Learning

Reinforcement
 Learning

Dependency on data

If we have more data, we can learn more!

However, things can get difficult!

One or Seven?

Random Decision Forest (RDF)

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

What is RDF?

RDF: Random Decision Forests

- Random
- Decision
- Forests \rightarrow Collection of trees!
- Decision Forests: Trees that take decision! aka: Decision Trees

Decision Tree

<u>1</u> <u>1</u> 0 0 0 0 0

- We have people with:
 - Red or blue colored hair
 - Gender (F/M): 1 or 0
 - Hair short/long (<u>underlined</u> or not)
- Look at the data, 3 types of people:
 - Blue colored males with short hair
 - Red colored males with short hair
 - Blue colored females with long hair

Aim: Split into groups such that different groups are dissimilar.

From a Decision Tree to Forest

<u>1100000</u>

Color->Number->Underline

Color->Underline->Number

Underline->Number->Color

Underline->Color->Number

Number->Color->Underline

Number->Underline->Color

Underline->NumberNumber->UnderlineNumber->ColorColor->NumberColor->UnderlineUnderline->Color

Number

Underline

Color

From a Decision Tree to Forest

<u>1100000</u>

Color->Number->Underline

Underline->Color->Number

Color->Underline->Number

Number->Color->Underline

Underline->Number->Color

Number->Underline->Color

Time for some randomness! Pick 10 trees...

Underline->NumberNumber->UnderlineNumber->ColorColor->NumberColor->UnderlineUnderline->Color

Number

Underline

Color

$\underline{1}\,\underline{1}\,0\,0\,0\,0\,0$

Color->Number->Underline

Underline->Color->Number

Number->Color->Underline

Underline->Number->Color

Time for some randomness! Pick 10 trees...

Number->Underline

Number->Color

Color->Number

Underline->Color

Number

Color

From a Forest to RDF

<u>110000</u>

Underline->Color->Number

Underline->Number->Color Number->Underline->Color **Time for some randomness! Pick 10 trees...**

Number->Underline

Color->Number

OR

Color->Underline

Underline->Color

Underline

Color

What is RDF?

Part 1: Loading the data

```
from keras.datasets import mnist
import matplotlib.pyplot as plt
```

from sklearn.ensemble import RandomForestClassifier

(X_Train, Y_Train),(X_Test, Y_Test)=mnist.load_data()

```
fig = plt.figure()
for i in range(9):
    plt.subplot(3,3,i+1)
    plt.imshow(X_Train[i], cmap='gray')
    plt.title("Digit: {}".format(Y_Train[i]))
    plt.xticks([])
    plt.yticks([])
```


Part 2: Reshaping the data

- Input Image Dimension 28x28
- Number of Images 60,000
- Convert 2D image of dimension of 28x28 into one single vector of 1x784
- Do the above for each image and put these vectors in a matrix
- The output matrix will be of size 60,000 x 784

```
print(X_Train.shape)
nsamples_Tr, dimx, dimy = X_Train.shape
X_Train = X_Train.reshape((nsamples_Tr,dimx*dimy))
print(X_Train.shape)
print(Y_Train.shape)
nsamples_Te, dimx, dimy = X_Test.shape
X_Test = X_Test.reshape((nsamples_Te,dimx*dimy))
print(X_Test.shape)
print(Y_Test.shape)
print(Y_Test.shape)
```


Part 3: Train RDF and predict!

```
rfc = RandomForestClassifier(n_estimators=10)
rfc.fit(X_Train, Y_Train)
```

```
Accuracy=rfc.score(X_Test, Y_Test)*100
print(Accuracy)
Predictions=rfc.predict(X_Test)
print(Y_Test)
print(Predictions)
```


Convolutional Networks

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

 "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

 "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

Output = 1x1 + 2x0 + 2x(-1) + 4x0 + 4x2 + 5x1 + 1x0 + 3x(-1) + 4x0 = 9

 "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

Output = 2x1 + 2x0 + 3x(-1) + 4x0 + 5x2 + 3x1 + 3x0 + 4x(-1) + 5x0 = 8

 "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

Output = $4x1 + 4x0 + 5x(-1) + 1x0 + 3x^2 + 4x^1 + 4x^0 + 1x(-1) + 2x^0 = 8$

 "A mathematical operation on two functions (f and g) that produces a third function expressing how the shape of one is modified by the other"

Significance of Convolution (in images)

• The filter (g) helps in interpreting particular details in image (f).

Complex objects?

Deep learning models

- Tell the number of filters (g)
- Tell the shape of the filters (3x3, 5x5 etc.)
- Provide lots of data
- Let the modal learn these filters!

Part 1: Loading the data (and importing libraries)

```
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
```

```
batch_size = 128
num_classes = 10
epochs = 2
img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)
```

```
(X_Train, Y_Train),(X_Test, Y_Test)=mnist.load_data()
```


Part 2: Reshaping the data

- Input Image Dimension 28x28
- Convert into matrix of size: 60,000 x 28 x 28 x 1

```
print(X_Train.shape)
print(X_Test.shape)
X_Train = X_Train.reshape(X_Train.shape[0], img_rows, img_cols, 1)
X_Test = X_Test.reshape(X_Test.shape[0], img_rows, img_cols, 1)
print(X_Train.shape)
print(X_Test.shape)
```

- A Labels single value! ----> [1 x n_classes]
- Convert into matrix of size: 60,000 x 10

```
print(Y_Train[0])
Y_Train = keras.utils.to_categorical(Y_Train, num_classes)
Y_Test = keras.utils.to_categorical(Y_Test, num_classes)
print(Y_Train[0])
```


Part 3: Preprocessing the data

• Convert the data into range: [0,1]

```
X_Train = X_Train.astype('float32')
X_Test = X_Test.astype('float32')
X_Train /= 255
X_Test /= 255
```


Part 4: Create convolutional deep model

Part 5: Train, learn, and predict!

```
score = model.evaluate(X_Test, Y_Test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```

Thank you!!

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

